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Abstract 28 

Coffee is one of the most widely consumed beverages. We performed a genome-wide 29 

association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and 30 

identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined 31 

genetic correlations and performed a phenome-wide association study across thousands of 32 

biomarkers and health and lifestyle traits, then compared our results to the largest available 33 

GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were 34 

highly discrepant. We observed positive genetic correlations between coffee intake and 35 

psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in 36 

UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only 37 

consistent observations were positive genetic correlations with substance use and obesity. Our 38 

study shows that GWAS in different cohorts could capture cultural differences in the relationship 39 

between behavior and genetics.   40 
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Introduction 41 

Coffee is a leading global food commodity that has psychoactive properties that are largely 42 

due to the presence of caffeine1. While rates of use and daily intake varies widely by geographic 43 

region, it is estimated that approximately 60-85% of adults in Europe and the United States 44 

consume between 0.6 to 5.5 cups of coffee daily2-4. Intake of coffee and its bioactive constituents 45 

is associated with benefits on cognitive function5 and lower risk of liver disease6,7 (but see8), 46 

Parkinson’s and other neurodegenerative diseases6,7,9, cardiovascular disease6,7, type II 47 

diabetes6,7, and certain cancers6,7,10. However, coffee intake is also associated with higher risks 48 

for some adverse outcomes, including increased risk of other substance use and misuse11-14, 49 

some cancers (e.g., lung cancer7,10,15), poor lipid profile6,7, pregnancy loss6,7, gastrointestinal 50 

maladies16, and worse cardiovascular outcomes following excessive intake17. Given the 51 

widespread and regular intake of coffee across the globe, addressing the full spectrum of 52 

correlations with health and disease is an important but challenging task.  53 

Genetic studies offer a compelling avenue to investigate the relationships between coffee 54 

intake and other complex traits. Twin studies that calculate genetic contributions to daily coffee 55 

intake estimate it to be 36-56% heritable, suggesting that coffee intake should be amenable to 56 

genetic analysis. Whereas phenotypic correlations, which depend on measuring two or more traits 57 

in the same cohort, can arise from genetic and environmental factors, genetic correlations assess 58 

genetically driven relationships using the results from genome-wide association studies (GWAS) 59 

and can therefore examine correlations between two or more traits, even if they were measured 60 

in entirely non-overlapping cohorts. In the past decade, over a dozen GWAS (N=1,207-407,072) 61 

have examined coffee intake18-34. Several of these GWAS have found associations with single 62 

nucleotide polymorphisms (SNPs) within or near genes that metabolize caffeine (Supplementary 63 

Table 1), such as CYP1A1 and CYP1A218-20,23-26,30,32,33. Some of these loci are also associated 64 

with other complex traits, including liver disease35-37, cancers38-41, and alcohol consumption42-44. 65 
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This pleiotropy could suggest that these other associations are mediated by coffee intake or that 66 

these loci also influence these traits via alternative independent mechanisms. Genetic 67 

correlations have also been reported between coffee intake with other substance use45,46, reduced 68 

gray matter volumes18, psychiatric illness45, osteoarthritis47, sleep48, body mass index (BMI)49, 69 

type II diabetes49, and migraine50. However, some genetic correlations were conducted under a 70 

priori justification (e.g., other substance use traits, sleep) and as such may fail to capture the full 71 

scope of genetic correlations between coffee with other traits. Thus, a data-driven examination of 72 

trait associations with coffee intake remains unexplored. 73 

While coffee is the primary source of caffeine for many, other common dietary sources of 74 

caffeine include tea, soft drinks, and chocolate. Consequently, when we refer to coffee intake, we 75 

mean explicit measures of coffee intake (e.g., measured as cups/day) and not caffeine intake 76 

unless otherwise specified. Intake of other caffeine sources also varies by geographic region 77 

based on beverage sales2. For example, tea (rather than coffee) is the preferred source of caffeine 78 

in the United Kingdom (UK; tea vs. coffee: ~50% vs. 20%) compared to the United States (US; 79 

~10% vs. 30%)2. As some genetic studies used data from the UK Biobank (UKB) only18,47,48,51-53 80 

or combined cohorts across regions with different patterns of caffeinated beverage intake 81 

(Supplementary Table 1)32,33,46, this distinction may limit generalizability or introduce 82 

environmental and cultural confounds that affect the genetic associations between coffee intake 83 

and other traits.  84 

In this study, we used survey responses from US-based 23andMe, Inc. research 85 

participants of European ancestry (N=130,153) and performed a GWAS of a single item “How 86 

many 5-ounce (cup-sized) servings of caffeinated coffee do you consume each day?”. Using 87 

genetic correlations and phenome- and laboratory-wide association studies (PheWAS, 88 

LabWAS), we explored the relationships between coffee intake and thousands of biomarkers, 89 

health features, and lifestyle traits to provide a fuller inventory of genetic correlations with coffee 90 
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intake. We compared our findings from the 23andMe cohort to those from the UKB using publicly 91 

available GWAS summary statistics of coffee intake (“How many cups of coffee do you drink each 92 

day? (Include decaffeinated coffee)”, N=334,659, http://www.nealelab.is/uk-biobank/). Although 93 

we had originally intended to perform a meta-analysis, our results revealed a lower-than-expected 94 

genetic correlation between coffee intake in the two cohorts; therefore, we instead used these 95 

datasets to explore cohort differences in coffee intake across these two distinct populations. 96 

Results 97 

GWAS in the 23andMe US-based cohort replicated seven loci implicated in coffee intake 98 

Participant demographics of the 23andMe cohort are described in Supplementary Table 99 

2. The cohort was 65% male, had a mean age of 52.8 ± 16.9 years old, and an average BMI of 100 

28.38 ± 6.54 (range: 14.0-69.1), similar to the US average of 27.5 (95% CI: 25.5-29.4)54. The 101 

average coffee intake in the cohort was 1.98 (± 2.35 SD) cups per day, similar to the coffee intake 102 

distributions in UKB (2.14 ± 2.09 SD; see Supplementary Figure 1 and Supplementary Table 103 

3 for distributions). 104 

We conducted a GWAS of 14,274,006 imputed genetic variants assuming an additive 105 

genetic model that included age, sex, the first five genetic principal components, and indicator 106 

variables for genotype platforms as covariates (Supplementary Table 4; Supplementary 107 

Material for additional genotyping and GWAS details). The genomic control inflation factor of the 108 

GWAS was λ=1.09, suggesting no substantial inflation due to population stratification. SNP-109 

heritability of coffee intake via Linkage Disequilibrium score regression (LDSC) was 7.57% ± 0.59 110 

(Supplementary Table 5). 111 

We identified seven genome-wide significant (p<5.00E-08) independent (r2<0.1) loci that 112 

were associated with coffee intake (Figure 1, Table 1; Supplementary Figures 2-8 for locus 113 

zoom plots). These associations replicated prior coffee or caffeine GWAS findings 114 
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(Supplementary Table 6). For example, rs2472297 (p=3.60E-65, chr15q24.1) is in the intergenic 115 

region between CYP1A1 and CYP1A2, and has been previously associated with coffee and 116 

caffeine intake18,20,24,26,28,30,32,33,55. CYP1A1 and CYP1A2 encode members of the cryptochrome 117 

P450 superfamily of enzymes involved in xenobiotic metabolism22. rs2472297 has also been 118 

previously associated with traits like alcohol consumption56,57, clozapine pharmacokinetics58, 119 

kidney function59-62, and the concentration of biomarkers in urine63-68. We also identified 120 

rs4410790 (p=5.20E-55, chr7p21.1), which is located upstream of the AHR gene encoding a 121 

transcription factor that regulates CYP1A1/CYP1A2 and is activated by polycyclic aromatic 122 

hydrocarbons, which are present in coffee22,69. Prior studies associated rs4410790 and caffeine 123 

intake from tea20, as well as with traits like caffeine metabolism28, bitter beverage intake26, and 124 

urine biomarkers64,66-68,70. Lastly, rs199612805 (p=1.80E-10, chr22q11.23), which is located near 125 

ADORA2A, was also implicated in coffee intake. This variant was recently associated with 126 

caffeine intake from tea and coffee in the UKB20. ADORA2A encodes an adenosine G-protein 127 

coupled receptor that is inhibited by caffeine to produce stimulating effects71. The remaining four 128 

SNPs – rs34645063, rs28634426, rs117824460, and rs11474881 – were in linkage disequilibrium 129 

(LD) with SNPs previously identified by other coffee or caffeine GWAS18,20,24,26,28,30,55. rs34645063 130 

(p=3.30E-09, chr6q16.1) is a deletion/insertion polymorphism between MMS22L and POU3F2. 131 

rs34645063 is in LD (R2=0.74) with rs754177720 and is also associated with caffeine intake from 132 

coffee or tea20. rs28634426 (p=2.10E-10, chr7q11.23) is an intronic variant of STYXL1 in LD with 133 

rs17685 (R2=0.78) and rs1057868 (R2=0.76), which were previously implicated by coffee 134 

GWAS18,20,24,26,30,55. rs117824460 (p=1.70E-08, chr19q13.2) is an intronic variant of CYP2A6, and 135 

is in LD (R2=0.05) with rs56113850, which was implicated in coffee intake20,26 and caffeine 136 

metabolism28. CYP2A6 encodes a cryptochrome P450 superfamily enzyme member that 137 

metabolizes nicotine72; rs117824460 has also been associated with smoking traits57,73 and serum 138 

albumin74, C-reactive protein75, and liver alkaline phosphatase levels66. The final significant 139 

variant we identified, rs11474881 (chr20q13.33, p=1.10E-08), is an intronic variant of the 140 
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PCMTD2 gene; rs11474881 is in LD (R2=0.98) with rs6062679, which was previously implicated 141 

in coffee and tea intake and bitter beverage consumption26. We used three additional multi-142 

ancestral cohorts to replicate these findings (Table 1; Supplementary Table 3). Of the SNPs that 143 

passed QC, all replicated in a larger sample of 23andMe research participants of European 144 

ancestry (N=689,661), all replicated in those with African American ancestry (N=32,312), and one 145 

replicated in those of Latin American ancestry (N=124,155). 146 

We also report several notable nominal associations with coffee intake (p<1.00E-06, 147 

Supplementary Table 6). rs72790130 (p=5.50E-08, chr16q23.3) and rs2155645 (p=9.80E-07, 148 

chr11q23.2) are intronic variants of two cell adhesion molecule genes, CDH13 and NCAM1, 149 

respectively. Both genes have been previously implicated in substance use traits by other 150 

GWAS20,57,76-82 and candidate gene studies in humans and animal models83-88. rs2155645 is also 151 

in LD with rs2298527 (R2=0.43), which was previously implicated in daily caffeine intake from 152 

coffee20. rs11204734 (p=2.90E-07, chr1q21.3) is an intronic variant of ARNT; its protein 153 

heterodimerizes with AHR and binds to xenobiotic response elements to regulate transcription of 154 

CYP1A1 and CYP1A222. Finally, rs340019 (p=2.10E-07, chr15q22.2) is an intronic variant of 155 

RORA, which is involved in circadian rhythm and metabolic regulation, among other functions89. 156 

rs340019 is in LD with rs12591786 (R2=0.25), which was implicated in daily caffeine intake from 157 

cups of coffee and tea20.158 
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Table 1. Significant (p<5.00E-08) GWAS results for coffee intake from 23andMe research participants (N=130,153) of European 159 
ancestry (EA). Replication (EA Rep) was conducted in an additional cohort of 23andMe participants of EA (N=689,661), and in those 160 
with African American ancestry (AA; N=32,312) and Latin American ancestry (LA; N=124,155); *SNPs that did not pass QC in 161 
replication. See Supplementary Table 6 for additional information. 162 

SNP BP Allele
s Cytoband p 

value 

EA 

EAF 
Effect EA Rep p 

value 

EA 
Rep 
EAF 

AA p 
value 

AA 

EA
F 

LA p 
value 

LA 
EA
F 

Nearest 
gene(s) 

rs2472297 7502788
0 C/T chr15q24.1 3.60E

-65 0.23 0.08 1.28E-234* 0.24 3.09E
-05 

0.0
7 5.47E-47* 0.1

4 
CYP1A1, 
CYP1A2 

rs4410790 1728457
7 C/T chr7p21.1 5.20E

-55 0.38 -0.06 7.58E-212* 0.38 4.52E
-15 

0.5
2 9.89E-60* 0.5

5 
AGR3, 
AHR 

rs19961280
5 

2484399
1 D/I chr22q11.2

3 
1.80E

-10 0.01 -0.10 2.48E-29 0.01
5 

1.28E
-07 

0.0
8 6.32E-13 0.0

2 
ADORA2
A, UPB1 

rs28634426 7567559
4 G/T chr7q11.23 2.10E

-10 0.20 0.03 3.08E-16 0.24 0.08 0.3
2 8.17E-06 0.2

7 STYXL1 
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rs34645063 9859107
5 D/I chr6q16.1 3.30E

-09 0.47 -0.02 5.23E-16 0.48 0.05 0.6
5 4.35E-06* 0.5

8 
MMS22L, 
POU3F2 

rs11474881 6289295
6 D/I chr20q13.3

3 
1.10E

-08 0.55 -0.02 2.36E-12 0.55 .21 0.4
5 0.02* 0.6

2 PCMTD2 

rs11782446
0 

4137148
0 A/G chr19q13.2 1.70E

-08 0.03 -0.06 2.00e-07 0.03 0.08 0.0
1 0.08 0.0

2 

CTC-
490E21.1

2 

 163 
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 164 

Figure 1. GWAS and secondary analyses of coffee intake from the 23andMe cohort. A) 165 
Manhattan plot displays seven genome-wide significant loci for coffee intake in the 23andMe 166 
cohort (N=130,153). The horizontal line represents the threshold for significance (p=5.00E-08). 167 
Nearest protein-coding genes (<1Mb) to significant loci are labeled. Quantile-quantile plot shown 168 
in upper left corner. For more details, see Table 1 and Supplementary Table 6. B) Overlap of 169 
genes identified by MAGMA, H-MAGMA, S-PrediXcan, and S-MultiXcan. Genes identified by all 170 
four methods are displayed. C) Genes predicted to affect coffee intake identified by S-MultiXcan 171 
according to the most significantly associated biological systems. For more details, see 172 
Supplementary Table 9. D) Genes implicated in coffee intake by S-PrediXcan according to brain 173 
regions. Upregulated genes are shown in red, downregulated shown in blue. For more detail, see 174 
Supplementary Table 10.175 
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Gene-based and tissue enrichment analyses suggest coffee intake is primarily 176 

associated with gene expression in the brain 177 

We used gene- and transcriptome-based analyses (MAGMA, H-MAGMA, S-MultiXcan/S-178 

PrediXcan) and identified 165 target candidate genes that may be most relevant to coffee intake. 179 

MAGMA identified 31 genes implicated in coffee intake in physical proximity to GWAS loci 180 

(Supplementary Table 7). H-MAGMA, which maps SNPs to genes via chromatin interaction from 181 

human brain tissue, implicated 143 unique gene-tissue pairs showing expression specific to cell 182 

type (75.16% neuron [31.30% cortical neuron, 33.04% iPSC derived neurons; 35.65% midbrain 183 

dopamine neurons], 24.83% astrocyte) and developmental (48.00% fetal, 52.00% adult) 184 

(Supplementary Table 8). Finally, S-MultiXcan predicted significant transcriptional regulation of 185 

40 genes implicated in coffee intake dispersed across 20 tissues (Figure 1C; Supplementary 186 

Table 10). Of the top biological systems implicated by S-MultiXcan, nine were attributed to the 187 

nervous system (brain N=5; tibial nerve N=4), eight to the digestive system (esophagus N=6; 188 

pancreas N=1; small intestine N=1), and six to the reproductive system (testis N=4; prostate N=2; 189 

Figure 1C). Fifty percent of these genes were predicted to be downregulated in the digestive and 190 

reproductive systems, whereas 66.67% of nervous system genes were predicted to be 191 

upregulated. Cortical enrichment was further supported by S-PrediXcan (Figure 1D), showing 192 

that SNPs associated with coffee intake most frequently correlated with predicted gene 193 

expression in overall cortical and frontal cortical regions (N=4/tissue), as well as the putamen 194 

(N=5). Overall, four genes (SCAMP2, SCAMP5, MPI, and FAM219B) were identified by all four 195 

methods, and six of the 165 discovered genes (FBXO28, NEIL2, HAUS4, IGDCC4, RP11-196 

298I3.5, RP11-298I3.5) were not within 1Mb of SNPs identified by prior GWAS of coffee or 197 

caffeine traits (Supplementary Table 11; Figure 1B; Table 2). These novel genes have been 198 

associated with substance use (e.g., HAUS4 and smoking initiation73), educational outcomes 199 
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(e.g., HAUS4 and educational attainment90), and biomarkers (e.g., FBXO28 and mean platelet 200 

volume91; IGDCC4 and mean corpuscular volume92). 201 

Next, we used MAGMA gene-set analysis to identify biological pathways that may be most 202 

strongly associated with coffee intake. This analysis revealed significant enrichment (p=4.75E-203 

07) in pathways related to the metabolism of xenobiotics or foreign substances (i.e., chemicals) 204 

(Supplementary Table 12). 205 

MAGMA tissue-based enrichment analyses suggested that coffee intake was only 206 

significantly associated with brain tissue (Supplementary Figure 9A). More specifically, 207 

differential expression by coffee intake was enriched (p<9.25E-04) in the frontal cortex, overall 208 

cortex, cerebellum, and cerebellar hemispheres (Supplementary Figure 9B; Supplementary 209 

Table 12), consistent with the S-PrediXcan findings (Supplementary Table 9). 210 

Genetic correlation and polygenic score analyses of coffee intake in US- and UK-based 211 

cohorts reveal discrepant associations with health and psychiatric traits, but consistent 212 

positive associations with substance use and obesity 213 

To boost statistical power and identify novel genes associated with coffee intake, we 214 

sought to meta-analyze our data (metaGWAS) with those from the UKB using METAL93. As a 215 

preliminary step to determine the appropriateness of a meta-analysis, we examined the genetic 216 

correlation between coffee intake in the 23andMe and UKB cohorts. Surprisingly, the two datasets 217 

were only moderately correlated (rg=0.63, p=3.54E-43), although all top loci (p<5.0E-05) shared 218 

direction of effect and had similar effect strengths (Supplementary Figure 10). In addition, the 219 

estimated LDSC SNPh2 heritability of coffee intake of our metaGWAS was slightly lower than for 220 

both the univariate GWAS (metaGWAS SNPh2=4.09% ± 0.26 vs. 23andMe SNPh2=7.57% ± 0.59 221 

vs. UKB SNPh2=4.85% ± 0.33; Supplementary Table 5). We interpreted these results as an 222 
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indication of cohort heterogeneity and proceeded to analyze genetic associations with coffee 223 

intake in each cohort independently. 224 
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Figure 2. Discordant genetic and phenotypic associations with genetic disposition to 226 
coffee intake in US and UK cohorts. A) Comparison of genetic correlations across psychiatric 227 
(light gray), anthropologic (medium gray), and health (dark gray) traits between 23andMe (lanes 228 
1 and 2) and UKB (lanes 3 and 4). Lanes 1 and 3 show rg values calculated by LDSC, and lanes 229 
2 and 4 show FDR-corrected p values. Only traits for which at least one cohort was FDR-230 
significant are displayed. For a full list of correlations and trait names, see Supplementary Table 231 
14. Most signals persisted after conditioning for dietary sugar, cigarettes per day, and Alcohol 232 
Use Disorder Identification (AUDIT) Consumption scores using mtCOJO94 (Supplementary 233 
Tables 15-16; Supplementary Figures 11-12). Genetic correlations for traits denoted with * 234 
could not be calculated in both cohorts; ** denotes reverse coding. B) Phenomic associations 235 
(panel 1: PheWAS (p<3.62E-05), panel 2: LabWAS (p<1.57E-04)) identified from PGS of coffee 236 
intake from 23andMe and UKB summary statistics. Only traits for which at least one cohort was 237 
FDR-significant are displayed (saturated bars=FDR significant; desaturated bars=FDR non-238 
significant). neuro.=neurological; gen.=genitourinary; neopl.=neoplasms; sense=sense organs; 239 
derma.=dermatologic; imm.=immune. For full trait names and more detail, see Supplementary 240 
Table 18-19. 241 

 242 

To further understand these discrepancies, we performed a series of genetic correlation 243 

and polygenic score analyses. First, we examined the genetic architecture of coffee intake 244 

measured in 23andMe and UKB by comparing patterns of LDSC genetic correlation (rg) with 317 245 

traits across 20 health, psychiatric, and anthropologic categories from publicly available GWAS 246 

summary statistics (Figure 2A; Supplementary Table 14). After accounting for multiple testing, 247 

75 traits were genetically correlated with coffee intake in the 23andMe cohort and 74 traits in the 248 

UKB cohort. These associations could be underpinned by other unmeasured factors, like sugar 249 

intake from coffee sweeteners or smoking and alcohol use95. However, these patterns of genetic 250 

correlations persisted after conditioning on dietary sugar intake, cigarettes smoked per day, and 251 

alcohol consumption measured by the Alcohol Use Disorder Identification Test (AUDIT; 252 

Supplementary Tables 11-12; Supplementary Tables 15-16). Strikingly, of the traits significant 253 

in at least one cohort, only 34 (29.57%) were significant in both datasets, and only 58.82% of the 254 

traits significant in both datasets shared the same direction of correlation. 255 
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Among the traits that were significant and consistent in direction for both cohorts, we 256 

observed positive genetic correlations between coffee intake and substance use phenotypes. For 257 

example, we identified positive genetic correlations with smoking initiation (23andMe: rg=0.50, 258 

p=4.74E-47; UKB: rg=0.12, p=1.89E-06), drinks per week (23andMe: rg=0.39, p=3.38E-28; UKB: 259 

rg=0.21; p=1.39E-14), and cannabis initiation (23andMe: rg=0.28, p=1.34E-08; UKB: rg=0.09, 260 

p=5.61E-03). The strength of genetic correlations for substance use and misuse traits significant 261 

in at least one cohort was stronger in 23andMe compared to the UKB (0.30±0.03 vs. 0.09±0.02; 262 

Welch’s t(51.97)=5.96, p=2.23E-07). For example, associations with substance use disorder and 263 

dependence traits were mostly observed in the 23andMe cohort and were weaker or not observed 264 

in the UKB, such as for tobacco use disorder, opioid use disorder, cannabis use disorder, nicotine 265 

dependence, and alcohol dependence (rg=0.24 to 0.44, p=6.54E-23 to 2.12E-03), as well as 266 

externalizing (23andMe: rg=0.48, p=7.21E-41; UKB: rg=0.07, p=4.37E-03), which is highly 267 

correlated with substance use and misuse96. Cluster analysis showed that genetic correlations for 268 

coffee intake in both cohorts aligned more with general substance use than misuse 269 

(Supplementary Figure 13). 270 

Metabolic traits were largely congruent in their positive genetic correlations with coffee 271 

intake in both cohorts. For example, BMI (23andMe: rg=0.19, p=1.61E-11; UKB: rg=0.25, p=7.85E-272 

26) and waist-to-hip ratio (23andMe: rg=0.12, p=4.33E-04; UKB: rg=0.13, p=3.96E-07) were 273 

positively genetically correlated with coffee intake in both datasets. Also consistent across cohorts 274 

were the lack of significant genetic correlations with most cardiovascular and cancer traits. 275 

The majority of traits were only significant in one cohort or showed discrepancies in the 276 

direction of association. For example, coffee intake measured in the 23andMe dataset was 277 

positively genetically correlated with anxiety-related traits (rg=0.22 to 0.44, p=1.41E-05 to 8.53E-278 

03). In contrast, all significant genetic correlations between coffee intake and anxiety-related traits 279 

in the UKB were negative (rg= -0.33 to -0.12, p=5.49E-06 to 8.12E-03), except clinically diagnosed 280 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.09.23295284doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.09.23295284
http://creativecommons.org/licenses/by-nd/4.0/


18 

anxiety (rg=0.17, p=1.39E-05). We also identified significant positive genetic correlations with 281 

cross-disorder, attention deficit hyperactivity disorder, schizophrenia, and anorexia (rg=0.12 to 282 

0.27, p=1.00E-07 to 0.01) that were exclusive to the 23andMe dataset, whereas these 283 

associations were not apparent or were negatively genetically correlated in the UKB (rg= -0.13 to 284 

0.02, p=1.01E-04 to 0.55). Significant positive correlations with cognitive variables, such as 285 

executive function and intelligence, were found in the UKB (rg= 0.13 to 0.23, p=4.55E-08 to 8.04E-286 

23), though these were negatively genetically correlated in 23andMe (rg= -0.17 to -0.10, p=7.83E-287 

08 to 2.06E-03). Certain correlations with physical health traits also differed between cohorts. 288 

While correlations with most gastrointestinal traits in the 23andMe cohort were positive, such as 289 

a positive genetic correlation with gastric ulcers (rg=0.41, p=3.58E-03), the corresponding genetic 290 

correlations observed in the UKB were either non-significant or negative (rg= -0.22 to 0.12, 291 

p=1.34E-06 to 0.88). Positive genetic correlations with chronic pain as well as back, hip, and knee 292 

pain were observed in the 23andMe dataset (rg=0.12 - 0.26, p=9.02E-08 - 3.58E-03), yet only 293 

negative genetic correlations with pain traits were reported in the UKB (rg=-0.22 to -0.12, p=6.23E-294 

04 - 2.54E-06). Across all health and psychiatric traits that were significant within each cohort, all 295 

traits showed a positive genetic correlation with coffee intake in 23andMe participants. Only 296 

41.3% of correlations were positive in the UKB. 297 

We observed similar discrepancies when we extended our results to a health-care system 298 

population (Figure 2B). We conducted PheWAS and LabWAS by testing the association between 299 

polygenic scores (PGS) for coffee intake derived from 23andMe or the UKB with 1,655 medical 300 

traits and biomarkers. We identified 31 PheWAS and LabWAS traits that met the 5% FDR 301 

significance threshold using the 23andMe PGS, and 24 using the UKB PGS (Supplementary 302 

Tables 17 and 18). Only two endocrine traits (i.e., obesity and morbid obesity) and two biomarkers 303 

related to red blood cells were consistent in significance and direction of association. Otherwise, 304 

all significant associations were observed when testing PGS generated from one cohort but not 305 
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the other. For instance, when coffee intake PGS were derived from 23andMe, among the top 306 

positive PheWAS and LabWAS associations were substance use disorders and respiratory 307 

conditions (e.g., chronic airway obstruction, emphysema, and respiratory failure) and absolute 308 

monocyte count. Among the top negative associations derived from 23andMe PGS were those 309 

with sense organs, neoplasms, certain respiratory conditions (i.e., allergic rhinitis, acute and 310 

chronic tonsillitis, chronic tonsillitis and adenoiditis), and urea nitrogen serum/plasma. When 311 

coffee intake PGS were derived from UKB, among the top positive PheWAS and LabWAS 312 

associations were endocrine and musculoskeletal disorders, as well as the two metabolic 313 

biomarkers, glycated hemoglobin A1c and glucose. The only significant negative PheWAS and 314 

LabWAS associations from UKB-derived PGS were with anxiety disorders, and biomarkers 315 

related to blood (mean corpuscular hemoglobin concentration) and metabolic (cholesterol and 316 

triglycerides in serum or blood) traits.  317 

Discussion 318 

In this study, we contributed to the existing GWAS literature of coffee intake by analyzing 319 

a US population of 130,153 participants. We uncovered seven loci associated with coffee intake, 320 

most of which were in genes implicated in metabolic processes. Coffee related variants were 321 

significantly enriched in the central nervous system. Despite prior evidence that coffee intake 322 

confers health benefits, we found genetic correlations mostly with adverse outcomes in both 323 

cohorts, particularly substance use disorders and obesity-related traits, in both cohorts. 324 

Relationships with other medical, anthropologic, and psychiatric traits were inconsistent in the US 325 

and UK cohorts, suggesting that differences between populations may affect coffee intake GWAS 326 

results and its genetic relationships with other traits.  327 

Our GWAS replicated prior associations with genes and variants implicated in coffee and 328 

caffeine intake as well as other metabolic and xenobiotic processes28, including rs2472297 near 329 

CYP1A1/CYP1A218,24,26,33,46 and rs4410790 near AHR18,23,24,26,27,46,97, even though our study 330 
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sample was smaller compared to other GWAS (N=125,776-373,52220,24,26). Gene-based analyses 331 

uncovered 165 candidate genes, including four genes that overlapped across all four analyses: 332 

MPI, SCAMP2, SCAMP5, and FAM219B, all of which have been implicated in a prior coffee 333 

GWAS18. These overlapping genes have other associations with substance use and medical 334 

biomarkers including blood pressure, hypertension, and LDL cholesterol91,98-104. We identified 335 

gene enrichment in brain tissues across the frontal cortex, putamen, and hippocampus, consistent 336 

with prior GWAS showing enrichment for SNPs associated with coffee and caffeine in the central 337 

nervous system18,20,26. This is supported by brain imaging studies across cortical and subcortical 338 

areas showing morphological105-108 and functional109,110 differences between those who habitually 339 

drink coffee compared to those who do not. 340 

One of the most striking observations of this study is the breadth and magnitude of positive 341 

associations between coffee intake with substance use. It is widely believed that use of one 342 

substance heightens risk for use of other substances and that there are common genetic risk 343 

factors for any substance use111,112; coffee, which is not generally considered a drug of misuse, 344 

does not appear to be exempt from this. We identified positive genetic correlations between coffee 345 

intake and other substances (i.e., tobacco, alcohol, cannabis and opioid use), as well as relevant 346 

personality traits like externalizing behavior. The genetics of coffee intake aligned with substance 347 

consumption phenotypes, corroborating prior GWAS and twin studies113-115 (but see23), but not 348 

with substance misuse. This is perhaps unsurprising because the phenotype probed by the 349 

23andMe and UKB cohorts focuses on quantity rather than clinically-defined dependence. We 350 

and others previously demonstrated that the genetic architectures of other substance intake 351 

versus problematic use are unique43,111,116-119, and this is likely also true for coffee. 352 

We found consistent positive genetic correlations with BMI and obesity in both 23andMe 353 

and the UKB. This is in contrast to meta-analyses of randomized control trials and epidemiological 354 

studies that found unclear effects by any coffee or decaffeinated coffee intake on waist 355 

circumference and BMI-defined obesity, and a modest inverse relationship between coffee intake 356 
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and BMI120,121. Results for these studies are highly heterogeneous, likely due to interindividual 357 

variability in the inclusion of sugary coffee additives, cultivation, roasting, and brewing conditions 358 

affecting its chemical makeup9,122, and other habits surrounding coffee intake (e.g., concurrent 359 

food intake or appetite suppression by nicotine if smoking concurrently123). This contentious 360 

relationship may also be explained by the amount of coffee intake, as greater coffee intake seems 361 

to attenuate the genetic associations with BMI and obesity49, possibly due to the appetite 362 

suppressant effects of caffeine124. Alongside accounting for other dietary intake, detailed 363 

accounting of coffee preparation, and consumptive habits formed with coffee intake, future 364 

subgroup analyses may help explain discrepant associations between the genetics and 365 

prevalence of coffee intake with BMI-related traits. 366 

We did not recapitulate the beneficial phenotypic relationships between coffee intake and 367 

a variety of health outcomes that are generally reported by health association studies6-8,10,125-137, 368 

perhaps because our study focused on the genetic relationship between coffee intake and other 369 

medical outcomes, or because our study focused on coffee intake and not caffeine intake. At the 370 

genetic level, we find no evidence of a common genetic background that could explain the 371 

beneficial effects of coffee on 29 cancers, Alzheimer’s disease/dementia/cognitive impairments, 372 

Parkinson’s disease, diabetes, cirrhosis, most cardiovascular conditions, or gout. In fact, some of 373 

these associations (e.g., cardiovascular traits and type II diabetes) were positive in the 23andMe 374 

cohort but showed no significant associations in the UKB cohort. Similarly, phenome-wide 375 

analysis did not support prior cancerous, metabolic, cardiovascular, or neurological health 376 

advantages of coffee intake6-8,10,126-136,138. Although this may seem discrepant to phenotypic 377 

associations that generally report health benefits of coffee intake, recent meta-analysis of over 378 

100 phenotypic studies on coffee intake health outcomes suggest high levels of heterogeneity 379 

across cohorts6,7, especially across geographically separated populations6. 380 

We found many opposing relationships with the genetics of coffee intake between 381 

23andMe and UKB. For example, genetic correlations with pain, psychiatric illnesses, and 382 
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gastrointestinal traits were positively genetically correlated with coffee intake in 23andMe, but 383 

these associations were negative in the UKB. Inversely, the UKB analysis revealed that coffee 384 

intake was positively genetically correlated with cognitive traits, such as executive function and 385 

intelligence, corroborating prior evidence139-142, yet genetic correlations with these two traits were 386 

negative in 23andMe. Multiple PheWAS associations were also discordant. When PGS were 387 

derived from 23andMe, we observed heightened odds between genetic liability for coffee intake 388 

and respiratory illnesses, ischemic heart disease, infection, and alcohol-related disorders. Higher 389 

odds for musculoskeletal and sleep conditions were mostly associated with coffee PGS generated 390 

from the UKB. Only 11 out of the 42 phenotypes associated with coffee intake PGS showed 391 

negative associations, and none of these purported health “benefits” were consistently observed 392 

in both cohorts. Whereas the coffee intake PGS from 23andMe was associated with lower odds 393 

for ear conditions, skin neoplasms, allergic rhinitis, and tonsillitis, the PGS of coffee intake from 394 

the UKB was associated with a lower risk of anxiety disorders. Also of note is that the number of 395 

positive genetic correlations and PGS associations between coffee intake and these other traits 396 

was greater when analyzed using data from the 23andMe cohort versus from the UKB, and the 397 

strength of these associations was usually stronger. Partially consistent with this, one meta-398 

analysis of mortality found an inverse relationship between coffee intake and all-cause mortality 399 

in European but not US studies143. 400 

Our study shows that cultural, cohort, or geographic influences could affect the inferred 401 

genetic architecture of coffee intake and its associations with other health and lifestyle outcomes. 402 

Geographic regions may have an observable influence on GWAS results144. We observed no 403 

significant differences in subtle geographic differences on coffee intake correlations using location 404 

data available in the UKB (Supplementary Figure 14), suggesting cultural differences may 405 

contribute more to the cohort variations we report here. There is considerable variation in how or 406 

with whom one may consume coffee that could be subject to cultural influence. Caffeinated 407 

beverage sales, for instance, suggest that coffee and carbonated caffeinated beverages are more 408 
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preferred in the US than the UK2, whereas tea is the preferred source of caffeine in the UK and 409 

may modify coffee intake2 (Supplementary Figure 15). Higher levels of coffee intake or caffeine 410 

from high caloric beverages in the US cohort may partially explain the higher number and 411 

magnitude of negative health associations observed in the 23andMe analysis. Even across coffee 412 

beverage subtypes, the concentration of caffeine, other coffee chemical constituents, and 413 

manufacturing byproducts (e.g., plastics and metals from packaging) varies and thus may be 414 

important parameters in health associations122,145,146. A recent investigation revealed the volume 415 

of ground or instant coffee is important to the potential health effects of its intake147; instant coffee 416 

(~60 mg of caffeine per cup) is more commonplace in the UK whereas fresh brewed coffee (~85 417 

mg of caffeine per cup 20) is preferred in the US2. Cultural differences in coffee intake could help 418 

explain the divergent patterns of health and lifestyle associations between UK and US 419 

participants, though the relative contributions of culture, geography, and their interactions to these 420 

differences will need further exploration. 421 

There are multiple caveats to consider when interpreting our findings. Firstly, our study 422 

does not address causality between coffee intake and other health and lifestyle traits. Mendelian 423 

randomization (MR) studies have attempted to address the exposure-outcome relationships 424 

between two traits by using genetic instruments (i.e., SNPs identified by GWAS) as proxies for 425 

exposure and associating them with an outcome of interest. For example, MR using genetic 426 

markers associated with coffee intake suggest that coffee consumption has no causal effect on 427 

obesity and endocrine disorders, despite observational studies suggesting protective effects of 428 

coffee148. Similarly, MR studies of coffee and other substance use (e.g., tobacco, alcohol, 429 

cannabis) are also contentious149,150, with evidence that inconsistencies may be driven by gene-430 

cohort confounds such as those we found in this study151. Secondly, the phenotype examined by 431 

23andMe was exclusively caffeinated coffee intake, with one cup defined as 5 ounces, whereas 432 

the UKB also included decaffeinated coffee and did not explicitly define the volume of one cup. 433 

The caffeine content within coffee was also not directly measured. However, secondary analysis 434 
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using summary statistics of estimated caffeine intake from any coffee subtype in the UKB20 yielded 435 

remarkably similar patterns of genetic correlations as those derived from our GWAS of cups of 436 

coffee consumed (Supplementary Figure 16, Supplemental Table 14). This analysis 437 

presumably mitigated the relative contribution of decaffeinated coffee (3mg of caffeine per cup 438 

versus 60 to 85mg per cup of caffeinated coffee20) to the revealed genetic associations, so we do 439 

not believe the cohort discrepancies are driven by the inclusion of decaffeinated coffee drinkers 440 

in the UKB. Another consideration is the possible health effects of non-caffeine coffee 441 

components, which are comparatively under-investigated9, such as other coffee bean 442 

phytochemical and drink additives. Furthermore, while it is unlikely that the discrepancies in 443 

genetic associations are driven by age, which is similar between cohorts (approximately 53 years 444 

old in 23andMe versus 5720 years old in UKB), these cohorts skew older than the population 445 

average. They are also of above average socioeconomic status152 and are of European descent, 446 

limiting generalizability of our findings to a larger population. Some studies also show sex-447 

dependent differences in coffee and caffeine metabolism and health associations with 448 

intake138,153,154, which was not examined in our study. 449 

Overall, we present striking differences in genetic associations of coffee intake across two 450 

large cohorts of European ancestry. While some genetic signals replicate across diverse cohorts, 451 

such as our GWAS findings and the associations between coffee intake with substance use and 452 

obesity traits, other associations may be obscured by cohort or cultural differences related to the 453 

phenotype in question. Our study provides a cautionary perspective on combining large cohort 454 

datasets gathered from unique geo-cultural populations. 455 

  456 
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Methods 524 

Study cohorts, coffee intake and univariate GWAS 525 

23andMe. Univariate GWAS was conducted in a sample of 130,153 male and female 526 

research participants of the genetics testing company 23andMe, Inc, as previously described155. 527 

Participants provided informed consent and volunteered to participate in the research online, 528 

under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent (E&I) 529 

Review Services. As of 2022, E&I Review Services is part of Salus IRB 530 

(https://www.versiticlinicaltrials.org/salusirb). During 4 months in 2015 and 14 months between 531 

2018-2020, participant responses to the question “How many 5-ounce (cup-sized) servings of 532 

caffeinated coffee do you consume each day?” were collected as part of a larger survey. 533 

Participants categorized as of European descent by genotype data were included in the univariate 534 

GWAS (see Supplementary Material)156. Participant demographics are presented in 535 

Supplementary Table 2. 536 

DNA extraction and genotyping were performed from saliva samples by clinical laboratories 537 

CLIA-certified and CAP-accredited by the Laboratory Corporation of America. 23andMe, Inc. 538 

conducted all quality control, imputation, and univariate genome-wide analyses as previously 539 

described (see Supplementary Table 4 for SNPs analyzed following quality control and 540 

imputation)157,158. Variants were imputed based on an imputation panel combining 1000 Genomes 541 

Phase 3, UK10K and the Human Reference Consortium. The 23andMe pipeline removes variants 542 

of low genotyping quality (failed a Mendelian transmission test in trios (p<1.00E-20), failed Hardy-543 

Weinberg test (p<1.02E-20), failed batch effects test (ANOVA p<1.00E-20), or had a call rate 544 

<90%) or imputation quality (r2<0.50 averages across genotyping arrays or a minimum r2<0.3 or 545 

variants with apparent batch effects (p<1.00E-50))157,159. The 23andMe GWAS pipeline performs 546 

linear regression and assumes an additive model for allelic effects43,155,160,161. Only unrelated 547 

participants were included in the GWAS, which was determined using a segmental identity-by-548 
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descent (IBD) estimation algorithm. Two individuals that shared more than 700 cM IBD at one or 549 

both genomic segments (~20% of the genome) were classified as related. This is the minimum 550 

threshold expected to identify first cousins in an outbred population. Age (inverse-normal 551 

transformed), sex, the top five principal genotype components, and indicator variables for 552 

genotype platforms were applied as covariates and p-values were corrected for genomic control. 553 

We conducted replication in three multi-ancestral cohorts (European ancestry N=689,661; 554 

African American ancestry N=32,312; Latin American ancestry N=124,155; daily mg of caffeine 555 

from coffee, transformed by log10(x+75)). Demographic information on these cohorts is shown in 556 

Supplementary Table 3. Ancestry was determined by analyzing local ancestry (see 557 

Supplementary Material)156. 558 

UK Biobank. Summary statistics of coffee intake (N=334,659) were generated from UK 559 

Biobank (UKB) participants. Participants provided informed consent, were of White British 560 

descent, and answered the question “How many cups of coffee do you drink each day? (Include 561 

decaffeinated coffee)”. Other previously published GWAS of coffee intake with publicly available 562 

summary statistics were not included in our meta-analysis due to differences in the way that coffee 563 

intake was measured (e.g., “How often do you drink coffee?”, “How much coffee do you consume 564 

per year?”30), or differences in ascertainment (e.g., Parkinson’s disease only31). Secondary 565 

analysis was also conducted with GWAS summary statistics of caffeine intake from coffee 566 

(N=373,522) in the UKB that was calculated based on the number of cups of caffeinated and 567 

decaffeinated coffee consumed20. For further information about the UKB data collection and 568 

GWAS summary statistics for coffee intake and caffeine consumed from coffee, see 569 

http://www.nealelab.is/uk-biobank/ (field 1498, both sexes) and Said et al. 202020, respectively. 570 

GWAS meta-analysis. We performed sample size weighted meta-analysis of the 23andMe 571 

and UKB cohorts using METAL (version 2020-05-05)93 as previously described43. A total of 572 
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491,347 participants of European ancestry and 9,551,852 SNPs passing quality control were 573 

included in this meta-analysis. 574 

 575 

Gene-based analyses (MAGMA, H-MAGMA, SPrediXcan/S-MultiXcan) 576 

The web-based platform Functional Mapping and Annotation of Genome-Wide 577 

Association Studies (FUMA v1.3.8) was used to further explore the functional consequences of 578 

lead SNPs and identify prior associations in the literature. GWA significant lead SNPs of coffee 579 

cups per day consumed from the UKB were identified using FUMA. SNPs were annotated based 580 

on ANNOVAR categories, Combined Annotation Dependent Depletion scores, RegulomeDB 581 

scores, expression quantitative trait loci (eQTLs), and chromatin state predicted by ChromHMM. 582 

Novel coffee intake candidate genes were identified as genes not in linkage disequilibrium or 583 

within 1Mb of GWAS-significant SNPs uncovered by other GWAS of coffee and caffeine traits 584 

(e.g., coffee/caffeine intake or caffeine metabolism). These SNPs were identified using the EBI 585 

GWAS Catalog (https://www.ebi.ac.uk/gwas/). 586 

MAGMA gene-based and pathway analyses. We used “Multi-marker Analysis of GenoMic 587 

Annotation” (MAGMA, v1.08) to conduct gene-based associations on the 23andMe GWAS 588 

summary statistics of coffee intake. SNPs were annotated to protein-coding genes using FUMA 589 

and Ensembl build v92, which accounts for SNP LD using multiple regression methods. The 590 

default settings were used, and LD was estimated using the 1000 Genomes European reference 591 

sample. The significance of associations across 19,773 genes were adjusted using Bonferroni 592 

correction for multiple testing (one-sided p<2.53E-06; Supplementary Table 7). Gene-set 593 

analysis was subsequently conducted on 10,678 gene-sets and Gene Ontology terms curated 594 

from the Molecular Signatures Database (MsigDB v7.0). Tissue-specific gene expression profiles 595 

were also assessed in 54 tissue types and 30 general tissue types across the body with average 596 

gene expression in each tissue type used as a covariate in the analysis (Supplementary Table 597 
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13). Using Genome-Tissue Expression (GTEx, v8) RNA-seq data, gene expression values were 598 

log2 transformed values of the average Reads Per Kilobase Million (RPKM) for each tissue type 599 

(RPKM>50 were listed as 50). Significance was determined following Bonferroni correction (one-600 

sided p<9.26E-04 for 54 tissue types; one-sided p<1.67E-03 for 30 general tissue types). 601 

H-MAGMA. To identify neurobiologically relevant target genes, we incorporated coffee 602 

intake GWAS data with chromatin interaction profiles from human brain tissue using Hi-C coupled 603 

MAGMA (H-MAGMA)162. 604 

S-PrediXcan and S-MultiXcan. We performed a transcriptome-wide association study 605 

(TWAS) using the MetaXcan package (ver0.7.5)163,164 consisting of S-PrediXcan and S-MultiXcan 606 

to identify specific eQTL-linked genes associated with coffee intake. eQTLs are genomic loci that 607 

contribute to heritable variation in mRNA levels that might influence the expression of a particular 608 

gene or its neighbors. This approach uses genetic information to predict gene expression levels 609 

in various brain tissues and tests whether the predicted gene expression correlates with coffee 610 

intake. S-PrediXcan uses precomputed tissue weights from the GTEx project database 611 

(https://www.gtexportal.org/) as the reference transcriptome dataset via Elastic net models. As 612 

input data, we included our GWAS summary statistics, transcriptome tissue data, and covariance 613 

matrices of the SNPs within each gene model (based on HapMap SNP set; available to download 614 

at the PredictDB Data Repository) from all available tissues (N=49). We applied a Bonferroni 615 

correction for multiple testing across all tissues (N=21,565; Supplementary Table 10). 616 

LDSC heritability and genetic correlations 617 

Linkage Disequilibrium Score regression (LDSC; https://github.com/bulik/ldsc) was used 618 

to calculate heritability (SNP-h2) and genetic correlations between habitual coffee intake and other 619 

phenotypes165. SNP-h2 was calculated from publicly available, pre-computed LD scores 620 

(“eur_w_ld_chr/”). LDSC was also used to calculate genetic correlations (rg) between habitual 621 
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coffee intake and 317 selected traits informed by prior literature across the following categories: 622 

substance use and misuse, anxiety, bipolar disorder & depression, cancer, cardiovascular, diet, 623 

gastrointestinal, lifestyle, metabolic, neurological, pain, personality, other anthropologic, other 624 

health, and other psychiatric traits. 625 

mtCOJO 626 

We conditioned summary statistics on traits that are correlated with coffee intake using 627 

mtCOJO94 to determine if genetic associations are retained after controlling for their effects. 628 

Conditioning on GWAS summary statistics for dietary sugar intake166, Alcohol Use Disorder 629 

Identification Test (AUDIT) consumption43, and cigarettes smoked per day73 were examined at a 630 

p<1.0E-5 and clump-r2 threshold of 0.10. 631 

Phenome and laboratory-wide association studies 632 

We conducted phenome-wide association analyses (PheWAS) and Laboratory-wide 633 

association analyses (LabWAS) to test the association between polygenic scores (PGS) for 634 

coffee intake and liability across thousands of medical conditions from hospital-based cohorts. 635 

These analyses were conducted using data from the Vanderbilt University Medical Center 636 

(VUMC). The project was approved by the VUMC Institutional Review Board (IRB #160302, 637 

#172020, #190418). VUMC is an integrated health system with individual-level health data from 638 

electronic health record (EHR) data for about 3.2 million patients. The VUMC biobank contains 639 

clinical data from EHR as well as biomarkers obtained from laboratory assessments. A portion of 640 

the individuals from VUMC also have accompanying array genotyping data. This cohort, with over 641 

72,821 patients, is called BioVU167,168. 642 

For each of the unrelated genotyped individuals of European ancestry from BioVU, we 643 

computed polygenic scores for coffee intake using the PRS-CS “auto” version167. Genotyping and 644 

quality control for this cohort have been extensively described168,169. 645 
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Phenome-wide association analyses (PheWAS). To identify associations between the 646 

PGS for coffee and clinical phenotypes, we performed a PheWAS. We fitted a logistic regression 647 

model to each of 1,338 case/control disease phenotypes (“phecodes”) to estimate the odds of 648 

each diagnosis given the coffee PGS, while adjusting for sex, median age of the longitudinal EHR, 649 

and the first 10 PCs. Analyses were conducted using the PheWAS v0.12 R package170. We 650 

required the presence of at least two International Disease Classification codes mapped to a 651 

PheWAS disease category (Phecode Map 1.2; https://phewascatalog.org/phecodes) and a 652 

minimum of 100 cases for inclusion of a phecode. The disease phenotypes included 145 653 

circulatory system, 120 genitourinary, 119 endocrine/metabolic, 125 digestive, 117 neoplasms, 654 

91 musculoskeletal, 85 sense organs, 76 injuries & poisonings, 65 dermatological, 76 respiratory, 655 

69 neurological, 64 mental disorders, 42 infectious diseases, 42 hematopoietic, 34 congenital 656 

anomalies, 37 symptoms, and 31 pregnancy complications. 657 

Laboratory-wide association analyses (LabWAS). We also examined laboratory results in 658 

BioVU, which we refer to as LabWAS. We implemented the pipeline already established by 659 

Dennis, et al. 169. Broadly, LabWAS uses the median, inverse normal quantile transformed age-660 

adjusted values from the QualityLab pipeline in a linear regression to determine the association 661 

with the input coffee intake PGS variable. We controlled for the same covariates as for the 662 

PheWAS analyses, excluding median age because the pipeline corrects for age using cubic 663 

splines with 4 knots. 664 

Cluster analysis 665 

Previous studies have shown that consumption and misuse/dependence phenotypes 666 

have a distinct genetic architecture43,111,116-119. To explore whether the coffee intake analysis 667 

clustered closer to substance intake or misuse/dependence phenotypes, we used an 668 

unsupervised machine learning hierarchical clustering algorithm known as agglomerative nesting 669 

(AGNES)167 on a genetic correlation matrix of all traits. AGNES initially forms single-item clusters 670 
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that are fused together into intermediate groups until all traits are included in a single cluster171. 671 

Clusters are formed with Ward’s method such that the total within cluster variance is minimized 672 

while maintaining the fewest number of clusters based on cluster dissimilarity. Dissimilarity is 673 

assessed through Euclidean Distance of each pairwise genetic correlation with another trait. The 674 

product of AGNES is a dendrogram, formed with multiple brackets called “branches”. AGNES 675 

was implemented in R using the cluster package (ver2.1.4)167. 676 

Clustering was conducted with summary statistics of cigarettes per day73, former 677 

smoker73, smoking initiation73, problematic opioid use161, ICD10 F17 nicotine dependence172, 678 

alcohol dependence173, AUDIT consumption116, AUDIT problems116, cannabis initiation79, 679 

cannabis use disorder118, drinks per week73, externalizing psychopathology96, Fagerström Test 680 

for Nicotine Dependence (FTND)174, general risk tolerance175, age of smoking initiation73, and 681 

opioid use disorder161. The genetic correlations of cigarettes per day, former smoker, and smoking 682 

initiation were reverse coded to show the intuitive effects against the other traits in the 683 

dendrogram. 684 

  685 
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