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Abstract 

Neuromodulation-based interventions continue to be evaluated across an array of appetitive 

disorders but broader implementation of these approaches remains limited due to variable 

treatment outcomes. We hypothesize that individual variation in treatment outcomes may be 

linked to differences in the networks underlying these disorders. Here, Sprague-Dawley rats 

received deep brain stimulation separately within each nucleus accumbens (NAc) sub-region 

(core and shell) using a within-animal crossover design in a rat model of binge eating. 

Significant reductions in binge size were observed with stimulation of either target but with 

significant variation in effectiveness across individuals. When features of local field potentials 

(LFPs) recorded from the NAc were used as predictors of the pre-defined stimulation outcomes 

(response or non-response) from each rat using a machine-learning approach (lasso), 

stimulation outcomes could be predicted with greater accuracy than expected by chance (effect 

sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best 

stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest 

that individual differences in underlying network activity may contribute to the variable outcomes 

of circuit based interventions and that measures of network activity have the potential to 

individually guide the selection of an optimal stimulation target and improve overall treatment 

response rates.  
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Introduction      

 Brain stimulation has demonstrated the potential to improve symptoms in Parkinson’s 

disease, depression and obsessive-compulsive disorder, yet highly variable treatment outcomes 

(especially common in psychiatric disorders) indicate that the full potential of brain stimulation is 

not being met [1-3]. The majority of these studies evaluate the treatment outcomes of a single 

brain target despite pre-existing evidence supporting the potential of other stimulation targets [2, 

4-6]. With these constraints, treatment outcome improvements have mostly been achieved to 

date through more stringent inclusion criteria and improved precision in modulating the intended 

brain target [7-9]. Another potential avenue to improve treatment outcomes for a specific 

disorder could be achieved through the personalization of target selection. This approach was 

pioneered by cancer biologists that used tumor immunoprofiling to personalize chemotherapy 

and it remains unknown if personalization of target selection for neuromodulation-based 

treatments has a similar potential to improve treatment outcomes in neuropsychiatric diseases 

including disorders of appetitive behavior.  

 Clinical studies that used invasive or non-invasive stimulation in disorders of appetitive 

behavior (e.g., addiction, binge eating and obesity), have demonstrated the potential of targeting 

an array of different brain areas but also demonstrated considerable treatment response 

heterogeneity across individuals [5, 10-14]. The pre-clinical literature on deep brain stimulation 

(DBS), while also encouraging for appetitive disorders, reveals considerable outcome variation 

resulting from the targeting of different brain regions across studies. In addition, most studies 

report only population-based effects, masking the problem of variation across individuals [15-

17]. 

 In this study, we used an established rat model of binge eating to produce binge-like 

feeding behavior [18-20]. Similar rodent models of binge eating have resulted in weight gain[18], 

compulsive feeding behavior[21, 22] and increased impulsivity[23] thus displaying problems in 

overlapping psychological domains to patients with binge eating disorder. It is important to 
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acknowledge however, that this is merely a pre-clinical approximation of the clinical condition 

and many successful pharmacologic trials using this rodent/rat model have failed to translate 

clinically with the exception of lisdexamfetamine [24, 25]. Using this pre-clinical model of binge 

eating we have previously shown variation in individual rat outcomes receiving deep brain 

stimulation targeting the nucleus accumbens core with about 60% of rats displaying a significant 

reduction in binge size with stimulation [26]. When non-invasive, repetitive transcranial magnetic 

stimulation was targeted to a related area of the reward circuit in patients with binge eating, the 

frequency of binges decreased in 18 of 28 subjects (~60%) [27]. While the primary outcome in 

clinical and pre-clinical studies is necessarily different (frequency of binges vs. size of binges) 

this rat model of binge eating could provide insight into the source of stimulation outcome 

variability and provide a model to explore the potential feasibility and benefit of personalized 

target selection for stimulation-based interventions.  

 We theorize that individual variation in brain stimulation outcomes targeting a specific 

brain region may be linked to individual differences in the networks underpinning the symptom 

of interest (e.g., binge eating) [27]. It follows that measures of relevant network activity would be 

able to predict brain stimulation outcomes at a given brain target or be used to individualize the 

choice between potentially viable targets. This study was designed to compare the treatment 

efficacy of stimulation targeted to either the nucleus accumbens (NAc) core or shell, two regions 

with known differences in anatomic and functional connectivity and differential functional roles 

across an array of reward related behaviors [28, 29]. This study replicated our previous 

treatment outcome variance with NAc core stimulation [26] and extended the results to assess 

whether similar variation in treatment outcomes occurs with NAc shell stimulation (previously 

reported by Halpern et al. to be effective in a mouse model of binge eating) [30]. It was then 

determined whether a correlation existed between individual stimulation outcomes and either 

corresponding performance on reward-related behaviors, local field potential recordings from 

the ventral striatum, or electrode localization within each NAc sub-region.  
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Methods and Materials   

Animals and Surgery 

      Male Sprague-Dawley rats were purchased from Charles River (Shrewsbury, MA) at 60 

days of age and individually housed on a reverse 12 hour light/dark schedule with house chow 

and water available ad libitum. Following habituation to the animal facility, rats were implanted 

with a custom electrode array that targeted both the NAc core and shell bilaterally, according to 

the following coordinates relative to bregma: 1.6 mm anterior; ± 1 and 2.5 mm lateral; and 7.6 

mm ventral. Animals were excluded from analysis if later histologic examination revealed 

electrode location outside of the NAc core or shell. All experiments were carried out in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals (NIH Publications 

No. 80-23) revised in 1996 and approved by the Institutional Animal Care and Use Committee at 

Dartmouth College.   

Binge Eating Paradigm 

 Following recovery from surgery (~1 week), rats began a paradigm of limited access to a 

palatable high-fat, high-sugar diet (“sweet-fat diet”), which contained 19% protein, 36.2% 

carbohydrates, and 44.8% fat by calories and 4.6 kcal/g (Teklad Diets 06415, South Easton, 

MA) as previously described [18]. The sweet-fat diet was provided to the rats in addition to 

house chow and water within stimulation chambers for 2 hour sessions, with 4-5 sessions per 

week (irregular schedule). Following 16-20 sessions the rats were consuming a stable and 

significant amount of sweet-fat food during each session (mean = 54% of their daily caloric 

intake ± 12% [1 standard deviation]). This “binge-like” feeding has been shown to result in more 

significant weight gain than is observed with continuous access to the same diet -- as is used in 

models of diet-induced obesity [18]. Prior work has also demonstrated that chronic, irregular, 

limited access to palatable food can result in compulsive feeding behavior[21, 22] and increased 

impulsivity [23]. Palatable sweet-fat and regular house chow consumption was measured during 

all limited access sessions.   
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Stimulation 

 To deliver stimulation, a current-controlled stimulator (PlexStim, Plexon, Plano, TX) was 

used to generate a continuous train of biphasic pulses. The output of the stimulator (current and 

voltage) was verified visually for each rat before and after each stimulation session using a 

factory-calibrated oscilloscope (TPS2002C, Tektronix, Beaverton, OR). Stimulation was initiated 

immediately before animals had access to the sweet-fat food and turned off at the completion of 

the 2 hour session.  

Overall Design 

Experiment 1 (N=8 rats) was used to determine the optimal stimulation parameters to reduce 

binge size using our custom electrode arrays targeting the NAc core or shell. Experiment 2 used 

a crossover design in a separate cohort of 9 rats to test DBS targeting the NAc core or shell with 

the optimized stimulation parameters from Experiment 1. Lastly, rats from Experiment 1 and 2 

that had received the optimized stimulation parameters in both NAc targets and remained in 

good health (N=12) continued on to Experiment 3 and underwent behavioral and 

electrophysiological characterization (Figure 1A).  

Experiment 1 - Identifying optimal stimulation parameters 

 To identify the optimal stimulation parameters for our custom arrays within the target 

brain structures (NAc core and shell) for altering feeding behavior we tested an array of 

published stimulation intensities (range: 150 to 500 µA) and electrode contact configurations 

(monopolar vs. bipolar). These permutations alter the size and shape of the electric field and the 

resulting effect that stimulation has on binge eating. Thus, custom electrodes were implanted in 

the NAc core and shell bilaterally in a cohort of rats (N=8). Using a simple randomization, rats 

were divided into two groups for a crossover design with different initial stimulation targets (core 

or shell). Animals were then trained in the binge eating paradigm until a stable baseline of 

sweet-fat food intake was established (15-20 sessions over 3-4 weeks) before stimulation 
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sessions were initiated. Stimulation current was increased for each subsequent session, starting 

at 150 µA and progressing to 500 µA in a bipolar configuration (between two wires within the 

target, separated by ~1mm in the dorsal-ventral plane), and then from 150 µA to 300 µA in a 

monopolar configuration (between one wire in the target and a skull screw over lambda). 

Animals then re-established their pre-stimulation baseline of sweet-fat diet consumption in the 

absence of stimulation. Following a return to baseline rats initiated stimulation sessions in the 

other NAc target with subsequent titration of stimulation parameters across multiple sessions 

(Figure 1A).  

Experiment 2 - Testing NAc core vs. shell stimulation using fixed stimulation parameters 

 Experiment 1 identified stimulation parameters that were similarly effective in either the 

NAc core or shell--bipolar stimulation at 300 µA or monopolar stimulation at 200 µA. We elected 

to use monopolar stimulation (biphasic, 90 μsec pulse width, 130 Hz, 200 μA) as it produced a 

lower charge density at the electrode surface which decreases the probability of neuronal injury 

[31]. In a new cohort of rats (N=9) electrodes were implanted and rats were randomized to 

receive initial stimulation in either the NAc core or shell using a simple randomization. After a 

stable baseline of sweet-fat diet consumption was established during limited access sessions 

(following 15-20 sessions), rats received 3 sessions of stimulation followed by 3 sham post-

stimulation sessions. Animals then entered a 2 week washout phase to re-establish baseline 

prior to crossover and stimulation in the other target (Figure 1A).  

Data Analysis 

Experiment 1 data analysis 

      In order to evaluate experiment 1 data an a priori definition of what a meaningful DBS 

induced change in binge size was required. This was accomplished by pooling baseline binge 

eating data from multiple cohorts to characterize variation in baseline binge size within the 
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population (36 rats, 3 baseline sessions per rat, 108 total baseline observations). The data 

came from all of the animals in this study, a previously published study [26], and unpublished 

data. Each observation was recorded as the percent change from that rats average baseline 

binge size. This “normalized variance” was done to account for the known variation between 

animals in their average binge size at baseline. This session to session normalized variation in 

binge size was found to be normally distributed, centered at 0% change with a standard 

deviation of 13% (Figure 1B). Thus, for Experiment 1, if an animal’s binge size during a 

stimulation session was greater or less than 26% (2 standard deviations) of its average baseline 

binge size it was considered a meaningful change induced by stimulation. 

Experiment 2 data analysis 

 Population-based analysis 

 We used standard population-based analysis for repeated observations (repeated 

measures analysis of variance, RMANOVA) and included 3 sessions of baseline, stimulation 

and post-stimulation data from each animal. Each stimulation target was analyzed 

independently as there were no significant differences in binge size between the baseline 

periods on either side of the crossover. Session number (1-3) and session type (baseline, 

stimulation, and post-stimulation) were used as independent variables. When the analysis 

indicated that differences existed between session types, post-hoc pair-wise comparisons 

between groups were made and multiple comparisons were corrected using Bonferroni with a 

corrected significance level set at p�0.05.  

 Individual-based analysis 

 Given our previously observed individual variation in DBS response we characterized 

each animal as either a responder or non-responder to stimulation in each target using an a 

priori definition. These individual stimulation response categories were then used for 

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/241794doi: bioRxiv preprint first posted online Jan. 1, 2018; 

http://dx.doi.org/10.1101/241794


 
 

9 

 

subsequent correlation with reward-related behavior and electrophysiologic recordings. 

Individual rats were classified as either non-responders [NR] or responders [R] to stimulation at 

each target based on the criteria used in Experiment 1 (greater than a 2 SD or 26% change in 

binge size from each animal’s baseline average) and this change had to be observed in all three 

stimulation sessions for a given target. 

Experiment 3 - Behavioral and electrical characterization (without stimulation) 

 All rats from Experiment 2 (N=9) and those rats from Experiment 1 tested with the 

stimulation parameters chosen for Experiment 2 in both targets (N=3) were included in 

Experiment 3 (N=12). These animals underwent subsequent behavioral and electrical 

characterization starting two weeks after the conclusion of Experiment 1 or 2. All rats underwent 

behavioral testing followed by another 2 week washout and then electrophysiology, all without 

stimulation (Figure 1A).  

Reward-related behavior (order of testing)  

To determine if variation in reward-related behavior could capture the underlying network 

differences that may be responsible for the variation in DBS outcomes, 3 reward-related 

behaviors were assessed. Behavioral outcomes were compared between NR and R groups for 

each DBS target using a two-way t-test. A significance threshold of p<0.05 was used to screen 

for behaviors with potential correlation to stimulation outcomes.   

 Increased sweet-fat diet intake with food deprivation (1)  

Food deprivation (24 hours) was used to push the energy homeostasis system towards an 

orexigenic state. Individual variation in the resultant changes in binge size from baseline was 

measured. Thus, the primary outcome was the percent change in binge size from each rat’s 

baseline average to that observed following food deprivation.    
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 Locomotor response to novelty (2) 

Locomotor response to novelty was chosen because of previous correlations between variation 

in this behavior (high and low responders) and a sensation-seeking behavioral phenotype linked 

to a higher risk for developing disorders of appetitive behavior [32, 33]. Briefly, rats were placed 

in a 1.5 ft X 3 ft black plastic chamber that was novel to the animal and allowed to freely explore 

for 50 minutes while video was recorded. Video files were analyzed offline using automated 

contrast-based tracking (Cineplex software, Plexon, Plano, TX) to calculate the distance 

traveled (primary outcome).  

 Conditioned place preference (CPP) (3) 

CPP was assessed due to the known involvement of the NAc in CPP [34]. We used an 

established 2-chamber biased design paradigm, pairing the sweet-fat food with the individual 

animal’s non-preferred chamber and regular house chow with the preferred chamber (30 minute 

pairing, 1 pairing per day, alternating between the 2 chambers for 4 days) [35, 36]. Baseline and 

test sessions (15 minutes) were video recorded and automatically scored using contrast-based 

tracking to assess time spent in each chamber. The primary outcome was the change in the 

percentage of time spent in the initially non-preferred chamber (paired with sweet-fat diet). 

Local field potential (LFP) recording 

 We recorded local field potential (LFP) activity bilaterally from the NAc core and shell of 

each animal to assess if variation of intrinsic network characteristics in the absence of 

stimulation correlated with stimulation outcomes. Rats were tethered in a neutral chamber 

through a commutator to a Plexon data acquisition system while time-synchronized video was 

recorded (Plexon, Plano, Tx) for offline analysis. Using the video, rest intervals were manually 

identified as extended periods of inactivity and only recordings from these intervals were used in 

the analysis. We used well-established frequency ranges from the rodent literature and standard 
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LFP signal processing to characterize the power spectral densities (PSDs) within, and 

coherence between brain regions (bilateral NAc core and shell) for each animal using custom 

code written using Matlab R2015b [37-39] (Supplemental Methods). Each rat recording session 

produced 60 LFP features: 24 measures of power (6 frequency bands X 4 brain locations) and 

36 measures of coherence (6 frequency bands X 6 possible location pairs, Figure 5A and B). 

Linking ventral striatal activity to stimulation outcomes  

 As there were many more predictor variables than number of animals we employed a 

machine learning approach to determine if there was information within the LFP signals that 

correlated with stimulation outcomes. We used a penalized regression method, lasso, to reduce 

the dimensionality by removing LFP features that contained no information or redundant 

information and thereby extract a combination of LFP features that most accurately described 

the observed variation in stimulation outcomes. The Matlab package Glmnet was used to 

implement the lasso using a cross-validation scheme with 100 repetitions for each model (Core 

R vs. NR, Shell R vs. NR, and Core vs. Shell). For the Core vs. Shell model, each animal’s 

optimal stimulation target was defined as the stimulation target that produced the largest 

average reduction in binge size (rats without a significant reduction were excluded). The 

accuracy of the models is reported as the average cross-validated accuracy. In order to 

determine if the achieved accuracies were meaningfully better then chance, the entire process 

stated above was repeated for ten random permutations of the data for each model type. The 

permutations randomized the relationship between the binary stimulation outcomes (R=1, 

NR=0) or optimal target assignment (Core =1, Shell=0) with the individual rat LFP feature sets 

to maintain the overall structure of the data but permute the relationship of dependent to 

independent variables. The distribution of accuracies from the observed data was then 

compared to the distribution from the permuted data using the Mann-Whitney U test and then 

the U test statistic was converted into a Cohen’s d effect size.  
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If the lasso indicated that information existed in the LFP signal, a subsequent investigation of 

each LFP feature was carried out to determine which features contained the most information. 

For this, univariate logistic models were built using each of the LFP features to classify: 1) core 

responses; 2) shell responses; or 3) core or shell as the best stimulation target for each animal. 

For the logistic models, an exhaustive leave-one-out cross-validation was used in order to 

obtain a distribution of accuracies and the mean accuracy from these distributions is reported in 

Table 1 for the top 5 features from each model type. 

Verification of electrode placement 

 At the conclusion of all experiments rats were euthanized and the brains were removed, 

prepared for cryostat sectioning, and then mounted and stained (thionine) for histologic analysis 

of electrode placement [26]. All animals included in the results had electrodes located within the 

target structure (Figure 4C).  

Results 

Experiment 1 - Identifying optimal stimulation parameters 

 Figure 2A summarizes the outcome of stimulation in the NAc core with significant 

reductions in food intake observed with a bipolar configuration (300 µA) in 3/8 animals and with 

monopolar configuration (200-300 µA) in 4/8 animals. Figure 2B summarizes the outcomes of 

stimulation of the NAc shell with significant reductions in food intake observed in a subset of 

animals in bipolar and monopolar configurations. Interestingly, a subset of the shell-stimulated 

animals had significant increases in food intake at higher stimulation intensities. An example of 

an individual rat’s food intake across tested stimulation parameters in the NAc core and shell is 

shown in Figure 2C. This rat had significant reductions in food intake during stimulation in the 

NAc shell at bipolar 300 µA and monopolar 200 µA with no significant food intake changes with 

core stimulation (shell only). Figure 2D illustrates the entire cohort’s individual response profiles. 
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As demonstrated by the example rat, many animals responded to stimulation in only one of the 

two NAc sub-regions, despite testing across a range of stimulation parameters. Overall, this 

cohort of animals helped identify a stimulation configuration ([monopolar] and parameters [130 

Hz, 90 µsec pulse width, and 200 µA]) for the custom arrays that was capable of decreasing 

food intake when targeting either the NAc core or shell. 

Experiment 2 - Testing NAc core vs. shell stimulation using optimized stimulation 

parameters    

 Figure 3A shows the population outcomes for this cohort (N=9). Using standard 

population statistics (RMANOVA), a main effect for session type (baseline, stimulation, post-

stimulation) was observed in the shell stimulation set (F(1,8) = 8.171, P = 0.02) and in the core 

stimulation set (F(1,7) = 3.772, P = 0.05). In order to determine which sessions were different, 

post-hoc pairwise comparisons with Bonferroni adjustment showed a significant difference 

between the baseline sessions and each stimulation session (p<0.05) but not between the 

baseline sessions and the post-stimulation sessions. 

 To determine which rats responded to NAc core and shell stimulation, an a priori 

definition of a significant stimulation response was used -- greater than a 26% change from 

baseline average in all 3 stimulation sessions. The individual responses to NAc core and shell 

stimulation are shown in Figure 3B and C respectively, with significant individual responders 

shown in black and non-responders shown in grey. In this cohort, 5/9 rats responded to shell 

stimulation, 4/9 rats responded to core stimulation and 5/9 rats responded to stimulation in only 

one of the two targets. Overall (Experiment 1 and 2) 10/17 rats (~60%) responded to only one of 

the two stimulation targets highlighting the need for individualized targeting. Also, the difference 

in the number of animals that responded to NAc core and shell stimulation likely underpins the 

difference in the population-based analysis described above -- the percent reduction in binge 

size was roughly equivalent in across stimulation sites in the individuals that responded.     
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Experiment 3 - Behavioral and electrical characterization (without stimulation) 

Correlating stimulation outcomes with reward-related behavior 

 It was our hypothesis that innate variation in NAc core and shell networks would be a 

common source of variation in reward-related behavior and stimulation outcomes. Thus, we 

expected to see a relationship between variation in reward-related tasks and stimulation 

outcomes. The behavioral metrics of the 12 included rats were grouped based on the rat’s 

individual response to stimulation as defined previously (R - responder and NR - non-responder 

for each stimulation target). Differences between R and NR groups were evaluated with t-tests 

and none of the behavioral measures showed a potential to differentiate the R group from the 

NR group for core- (Figure 4A) or shell- (Figure 4B) targeted stimulation.  

Correlating stimulation outcomes with electrode localization  

 Figure 4C-E illustrates the relationship of anterior-posterior (A-P) position in the core 

(Figure 4D) and the shell (Figure 4E) and the corresponding stimulation outcomes (black -- 

responders; grey -- non-responders). Variation of electrode location within the A-P dimension 

displayed no qualitative relationship with stimulation outcomes.   

Correlating stimulation outcomes with local field potential activity  

The lasso was able to use information contained within LFP features to determine which 

response group an animal belonged to with an average accuracy for core stimulation of 72% 

(standard deviation ± 5%), outperforming the models produced from random permutations of the 

data (49% accuracy ± 11%) with an effect size of 1.13 (Figure 5C). The lasso models classifying 

shell stimulation outcomes performed with an average accuracy of 65% (standard deviation ± 

7%), outperforming the models produced from random permutations of the data (49% accuracy 

± 11%) with an effect size of 1.05 (Figure 5E). Finally, each rat with a significant reduction in 

binge size was grouped by the target (NAc core or shell) that produced the largest average 

reduction in binge size across the three stimulation sessions. LFP features were able to match 
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individual rats to the most effective target for stimulation using lasso with an average accuracy 

of 76% (standard deviation ± 7%) compared to 59% (standard deviation ± 8%) for the permuted 

data with an effect size of 0.96 (Figure 5D).   

It is important to note that each rat had 2 LFP recording sessions separated by up to 70 

days and each recording session was separately incorporated into the model. Therefore, only 

LFP features that had stable differences between groups (e.g., R vs. NR) across time were 

selected and used by lasso. An example of one of the selected LFP features is shown in Figure 

5F showing that the feature was less different between day 1 and day 71 within animals than 

observed between the response and non-response groups (Figure 5F -- black horizontal lines). 

This finding indicates that the information about stimulation outcomes extracted from LFP 

signals has stability through time.   

To determine which components of the LFP signal contained information about 

stimulation outcomes, each feature’s univariate performance in logistic models (% accuracy) 

was compared to how commonly those features were included in the multivariate (lasso) models 

(% survival). Table 1 lists the top 5 LFP features from the logistic and lasso models of core and 

shell stimulation outcomes (R vs. NR) and the classification of the optimal target for each animal 

(core vs. shell). This exploration revealed a predominance of delta band features in the logistic 

models that did not translate to survival in the lasso models suggesting that while delta features 

contained the most information about outcomes, this information was likely highly redundant. 

Thus, only one delta feature tended to be included in the lasso models. Arrows in the table 

indicate the directionality of the feature differences between groups.  

Discussion 

 These experiments demonstrate that deep brain stimulation of either the nucleus 

accumbens core or shell, regions with known differences in brain connectivity and distinct 

functional roles in appetitive behaviors, have a similar capacity to alter “binge-like” feeding 

behavior. Experiment 1 demonstrated that despite titration across multiple stimulation 
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parameters only subsets of animals show significant changes in binge behavior with stimulation 

in either of the tested targets. Experiment 2 confirmed this finding and an evaluation of 

individual responses across the first two experiments illustrates that 66% of rats only respond to 

DBS in one of the two targets, supporting the likelihood that personalized target selection could 

improve treatment outcomes. Experiment 3 demonstrated that variation in stimulation outcomes 

could be, in part, explained by individual differences in recorded local field potential activity 

using a machine learning-based approach (lasso). Most importantly, ventral striatal oscillations 

were also capable of classifying the most effective stimulation target for each individual, 

demonstrating the feasibility of using network activity to personalize target selection for 

neuromodulation-based treatments. 

 The translational relevance of this work is supported by previously observed treatment 

outcome variability in clinical studies of focal stimulation in disorders of appetitive behavior [5, 

13, 40]. As an example, in a study using repetitive transcranial magnetic stimulation of the 

medial prefrontal cortex for patients with binge eating, differences in cortical-striatal network 

activity were shown to correlate with response to stimulation [27]. Therefore, it is notable in this 

study that a large proportion of animals that failed to respond to stimulation in one brain target 

(NAc shell), responded to stimulation in an alternative target (NAc core). Further, results from 

this study suggest that network activity recorded in the ventral striatum contains information that 

can predict the optimal target for stimulation on an individual basis. This finding suggests that 

even in this outbred rat model of binge eating there are likely individual differences in the 

networks contributing to the behavioral expression of binge eating.  

 The assertion that variation exists across individuals in the specific cortical-striatal 

networks that underpin the expression of appetitive behavior is supported by a rich literature 

including the well characterized spectrum of goal-directed to habitual behavior [41-44]. Thus, 

the striatal sub-regions driving binge like behavior could vary across individuals and impact 

which striatal target (NAc shell vs. core) is most likely to modulate binge behavior. Patients with 
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binge eating have also been shown to display altered function in distinct networks including the 

reward/salience network [45-47] and/or the cortical control network [48-51] using non-invasive 

methods to assess network activity. Altered function of one of these networks may be enough to 

perpetuate binge eating [52], and our work in rats suggests that even within the ventral striatum, 

different sub-circuits (involving the NAc core or shell) may be differentially contributing to the 

maintenance of binge eating across rats. Taken together, clinical and pre-clinical studies 

suggest that a single stimulation target may not have the capacity to reduce binge eating across 

all individuals, and measures of relevant network activity could guide the selection of an 

effective stimulation target for each individual.  

 In order to translate personalized targeting of focal stimulation to patients, a non-invasive 

method of measuring network activity would be required prior to the intervention. Therefore, it is 

important to consider the relationship between information extracted from LFP oscillations 

recorded from depth electrodes reported in this study and non-invasive methods of measuring 

related network activity in patients. Our data suggest that inter-hemispheric coherence at low 

frequencies (delta and theta) may be a rich source of information about DBS outcomes. 

Previous work has established that correlation exists between these LFP features and fMRI 

derived measures, including resting state functional connectivity [53-55]. The work presented in 

this study supports the inclusion of the ventral striatum and interconnected cortical regions for 

future investigations that attempt to use brain activity to guide targeting of focal stimulation for 

binge eating and related disorders of appetitive behavior.   

 Overall this study was limited by the scope of information used (recordings from bilateral 

NAc core and shell) to build our predictive models. Thus, increasing the number of recording 

sites to include regions in the distributed feeding circuit (e.g., hypothalamic/brainstem, medial 

prefrontal and orbitofrontal cortex) would be important for future studies. In particular, recording 

from cortical regions would have translational relevance to non-invasive clinical measures of 

brain activity (e.g., EEG) in addition to MRI derived features. Future studies will incorporate pre-
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stimulation recordings in order to capture network dynamics in treatment naïve animals. In 

addition, although using a penalized regression (lasso) mitigated the problem of having many 

more predictor variables than observations, a larger sample size would allow for testing of the 

tuned multivariate regressions on naïve datasets and provide more power to correlate variation 

in electrode location with stimulation outcomes. We cannot rule out the possibility that variation 

in targeting within the NAc sub-regions also contributed to stimulation outcome variation. 

Inclusion of a female cohort would have increased the generalizability of this study as more 

women suffer from binge eating compared to men. Lastly, while none of the reward-related 

behaviors tested in this study showed the potential to predict stimulation outcomes, additional 

behaviors with differential NAc core and shell dependence may better characterize the 

individual variation that may underlie the variation in stimulation outcomes [43, 56].  

Conclusion 

For the treatment of many psychiatric disorders, as demonstrated here in a rat model of binge 

eating, a single target for focal stimulation may not be effective across all individuals. Rather, an 

individualized treatment approach that uses network activity to guide personalized target 

selection could lead to improved outcomes for neuromodulation-based treatments.  
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Figures and Legends  

 

Figure 1. Experimental design and timeline with population data used to define significant 

change in binge size from baseline. A. Experimental design for Experiments 1-3 with timeline 

shown at bottom. A - acquisition of stable binge size following chronic irregular limited access 

and randomization to initial stimulation target, B - baseline sessions, S - stimulation sessions, 

PS - post-stimulation sessions, Food Dep - food deprived binge session, LRN - locomotor 

response to novelty, CPP - conditioned place preference, LFP Recording - local field potential 

recording at two timepoints (T1 and T2). B. Population baseline data (3 sessions per animal, 

N=36 animals) was used to determine an a priori definition of a significant change from baseline 

binge size (BS). Distribution of binge size variance across baseline sessions was fit to a normal 

distribution with R2 fit shown (1 standard deviation [SD] = 13% change from baseline average). 

C. The percentage of animals engaged in feeding behavior through a normalized binge session 

had a bimodal distribution. Vertical black lines under the curve provide an individual example of 

all of the feeding epochs from a single animal through a binge session.  
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Figure 2. Optimal stimulation parameters were identified that could reduce binge size (BS) 

using the electrode arrays targeting the NAc core and shell. A. Titration of stimulation 

parameters in NAc core reveals bipolar 300µA and monopolar 200µA are both effective and 

roughly equivalent. Bipolar (black) and monopolar (Mono, grey) stimulation configurations with 

corresponding current intensities shown on x-axis. B. Titration of stimulation parameters in NAc 

shell showing similar effective parameters. C. Example of a single rat’s stimulation response 

profile illustrating a shell only responder (core - grey; shell - black). Horizontal lines illustrate ± 2 

standard deviations (± 26%). D. Distribution of stimulation response profiles for this cohort 

showing that 5/8 animals resonded to only one of the two stimulation targets. 
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Figure 3. Deep brain stimulation targeted to either the NAc core or shell produces significant 

reductions in binge size using population-based analysis but with clear individual responders 

and non-responders. A. Population-based analysis (RMANOVA) with post-hoc evaluation 

revealed a significant difference between baseline (B) and stimulation (S) sessions but not 

between baseline and post-stimulation (PS) sessions with either core (black) or shell (grey) 

targeted stimulation (* p�0.05, boxplots - 95% CI). B. Individual rat responses to core 

stimulation with responders (black, 4/9) and non-responders (grey, 5/9). Horizontal lines 

illustrate ± 2 standard deviations (± 26%). C. Individual rat responses to shell stimulation with 

responders (black, 5/9) and non-responders (grey, 4/9).  
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Figure 4. Variation in reward-related behavior and electrode location does not relate to 

stimulation outcomes. Normalized behavioral data grouped by core (A) and shell (B) DBS 

response type --responders (R; black) and non-responders (NR; grey). No significant 

differences were observed between R and NR groups for the following outcomes: 1) total 

distance travelled during locomotor response to novelty (LRN); 2) change in the percent of time 

spent in the initially non-perferred chamber during conditioned place preference (CPP); and 3) 

percentage increase in food intake after 24 hours of food deprivation (DEP). C. All 12 rats 

included in the analysis had electrode locations within the bilateral NAc core and shell with 

electrodes localized within the black shapes collapsed onto two representative coronal sections. 

The largest variation in electrode positioning occurred along the anterior-posterior (A-P) 

dimension (1.4 to 2.4 mm anterior to bregma) No qualitative relationship between electrode 

placement along the A-P axis in NAc core (D) or shell (E) corresponded to stimulation outcomes 

-- responder (black) or non-responder (grey).   
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Figure 5. Local field potential (LFP) features recorded from ventral striatum can classify 

individual stimulation outcomes and are stable through time. A. Inset of a raw LFP trace from 

the left NAc core with its corresponding power spectral density plot. B. Corresponding 

coherence plot showing phase relationships across frequencies between the left NAc shell and 

right NAc core. The distribution of accuracies from classifying NAc core (C) and shell (E) 

stimulation responders (R) from non-responders (NR) using the observed data (black) and the 

permuted data (white) with mean accuracy ± standard deviation listed for each distribution. 

Effect sizes between observed and permuted distributions are also shown. D. Distribution of 

accuracies classifying the optimal target for stimulation (core vs. shell) for each animal using the 

observed data (black) or the permuted data (white). F. The difference in delta coherence 

(between the left NAc core and right NAc shell) from recording day T1 to T2 (up to 71 days 

apart) was smaller then the difference observed between the groups of animals that 

preferentially responded to core or shell.  
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Table 1. Top 5 LFP Features for Each Model Type 

  Logistic   Lasso  
Core  Features % Accuracy  R Features % Survival 

 CSLCL Δ 0.81  CCLCR hγ 98 
 CSLCR Δ  0.76  CCLCR lγ 88 

  PSR Δ 0.70  CCLSR θ 86 
  CCLCR hγ 0.70  PSL Δ 76 
  CCLCR Δ 0.68  PSR θ 74 
       
Shell  CCLCR Δ 0.73  PCR Δ 86 
  PCR Δ 0.71  CSLSR θ 85 
  CCLSR Δ 0.70  PCR α 81 
  CSLSR θ 0.70  PSL β 58 
  CSLCL lγ 0.68  CCLCR β 53 
       
Core  CCLCR hγ 0.79  CCLSR Δ 60 
vs.  PCR Δ 0.78  CSLSR θ 55 
Shell  CCLCR β 0.77  PSL θ 51 
  CCLCR Δ 0.76  PCR Δ 49 
  CSRCR θ 0.75  CSLSR lγ 12 
 

Table 1. The top 5 local field potential features used in single predictor (logistic) and multi-

predictor (lasso) models of NAc core and shell stimulation outcomes. Features are described by 

location (Core Left -CL, Core Right -CR, Shell Left -SL, and Shell Right -SR) and frequency 

band (delta -Δ, theta -θ, alpha -α, beta -β, low gamma -lγ, and high gamma -hγ). Power features 

are represented with location and frequency band (e.g., PSR Δ) and coherence features are 

represented with location pairs and frequency band (e.g., CSLCL Δ). Logistic features were 

ranked by the average % accuracy of the single variable logistic model using leave one out 

cross-validation. Lasso features were ranked by how frequently they were used in the lasso 

models from 100 iterations of cross-validation (% survival). The top five features that were 

common across logistic and lasso models for a given classification type (e.g., core response [R] 

vs. non-response) are highlighted in grey. Arrows to the left of the LFP feature indicate whether 

higher (up) or lower (down) LFP feature values increased the probability of a DBS response (R), 

or in the Core vs. Shell model the direction that increased the likelihood that Core is the better 

target for that animal.  
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