27 research outputs found

    Direct and Base Excision Repair-Mediated Regulation of a GC-Rich cis -Element in Response to 5-Formylcytosine and 5-Carboxycytosine

    Get PDF
    Stepwise oxidation of the epigenetic mark 5-methylcytosine and base excision repair (BER) of the resulting 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) may provide a mechanism for reactivation of epigenetically silenced genes; however, the functions of 5-fC and 5-caC at defined gene elements are scarcely explored. We analyzed the expression of reporter constructs containing either 2′-deoxy-(5-fC/5-caC) or their BER-resistant 2′-fluorinated analogs, asymmetrically incorporated into CG-dinucleotide of the GC box cis -element (5′-TGGGCGGAGC) upstream from the RNA polymerase II core promoter. In the absence of BER, 5-caC caused a strong inhibition of the promoter activity, whereas 5-fC had almost no effect, similar to 5-methylcytosine or 5-hydroxymethylcytosine. BER of 5-caC caused a transient but significant promoter reactivation, succeeded by silencing during the following hours. Both responses strictly required thymine DNA glycosylase (TDG); however, the silencing phase additionally demanded a 5′-endonuclease (likely APE1) activity and was also induced by 5-fC or an apurinic/apyrimidinic site. We propose that 5-caC may act as a repressory mark to prevent premature activation of promoters undergoing the final stages of DNA demethylation, when the symmetric CpG methylation has already been lost. Remarkably, the downstream promoter activation or repression responses are regulated by two separate BER steps, where TDG and APE1 act as potential switches

    Cockayne Syndrome: Varied Requirement of Transcription-Coupled Nucleotide Excision Repair for the Removal of Three Structurally Different Adducts from Transcribed DNA

    Get PDF
    Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS) however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N-2-yl)-2- acetylaminofluorene adduct (dG(N-2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed exclusively by the CSA and CSB-dependent pathway. In contrast contribution of the CS proteins to the removal of two other transcription-blocking DNA lesions - N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and cyclobutane thymine-thymine (TT) dimer - is only minor (TT dimer) or none (dG(C8)-AAF). The unique properties of dG(N-2)-AAF identify this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be critical for the CS pathogenesis

    8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1

    Get PDF
    The common DNA base modification 8-oxo-7,8-dihydroguanine (8-oxo-G) affects the efficiency and fidelity of transcription. We constructed plasmid substrates carrying single 8-oxo-G residues, specifically positioned in the transcribed or the non-transcribed DNA strands, to investigate their effects on the expression of an EGFP reporter gene and to explore the role of base excision repair in the mechanism of transcription inhibition. We report that 8-oxo-G does not directly block transcription in cells, since a single 8-oxo-G in the transcribed DNA strand did not reduce the EGFP expression levels in repair-deficient (OGG1-null) mouse embryonic fibroblast cell lines. Rather, inhibition of transcription by 8-oxo-G fully depends on 8-oxoguanine DNA glycosylase (OGG1) and, at the same time, does not require the localization of the lesion in the transcribed DNA strand. We propose that the interruption of transcription is induced by base excision repair intermediates and, therefore, could be a common consequence of various DNA base modifications. Concordantly, the non-blocking DNA modification uracil was also found to inhibit transcription, but in an OGG1-independent manner

    Gene silencing induced by oxidative DNA base damage: association with local decrease of histone H4 acetylation in the promoter region

    Get PDF
    Oxidized DNA bases, particularly 7,8-dihydro-8-oxoguanine (8-oxoG), are endogenously generated in cells, being a cause of carcinogenic mutations and possibly interfering with gene expression. We found that expression of an oxidatively damaged plasmid DNA is impaired after delivery into human host cells not only due to decreased retention in the transfected cells, but also due to selective silencing of the damaged reporter gene. To test whether the gene silencing was associated with a specific change of the chromatin structure, we determined the levels of histone modifications related to transcriptional activation (acetylated histones H3 and H4) or repression (methylated K9 and K27 of the histone H3, and histone H1) in the promoter region and in the downstream transcribed DNA. Acetylation of histone H4 was found to be specifically decreased by 25% in the proximal promoter region of the damaged gene, while minor quantitative changes in other tested chromatin components could not be proven as significant. Treatment with an inhibitor of histone deacetylases, trichostatin A, partially restored expression of the damaged DNA, suggesting a causal connection between the changes of histone acetylation and persistent gene repression. Based on these findings, we propose that silencing of the oxidatively damaged DNA may occur in a chromatin-mediated mechanism

    Consequences of DNA damage for gene transcription : direct effects of modified nucleobases and the role of base excision repair = Folgen von DNA-Schäden für die Gentranskription

    No full text
    The presence of damaged nucleobases in DNA can negatively influence transcription of genes. One of the mechanisms by which DNA damage interferes with reading of genetic information is a direct blockage of the elongating RNA polymerase complexes – an effect well described for bulky adducts induced by several chemical substances and UV-irradiation. However, other mechanisms must exist as well because many of the endogenously occurring non-bulky DNA base modifications have transcription-inhibitory properties in cells, whilstrnnot constituting a roadblock for RNA polymerases under cell free conditions. The inhibition of transcription by non-blocking DNA damage was investigated in this work by employing the reporter gene-based assays. Comparison between various types of DNA damage (UV-induced pyrimidine photoproducts, oxidative purine modifications induced by photosensitisation, defined synthetic modified bases such as 8-oxoguanine and uracil, and sequence-specific single-strand breaks) showed that distinct mechanisms of inhibition of transcription can be engaged, and that DNA repair can influence transcription of the affectedrngenes in several different ways.rnQuantitative expression analyses of reporter genes damaged either by the exposure of cells to UV or delivered into cells by transient transfection supported the earlier evidence that transcription arrest at the damage sites is the major mechanism for the inhibition of transcription by this kind of DNA lesions and that recovery of transcription requires a functional nucleotide excision repair gene Csb (ERCC6) in mouse cells. In contrast, oxidisedrnpurines generated by photosensitisation do not cause transcriptional blockage by a direct mechanism, but rather lead to transcriptional repression of the damaged gene which is associated with altered histone acetylation in the promoter region. The whole chain of events leading to transcriptional silencing in response to DNA damage remains to be uncovered. Yet, the data presented here identify repair-induced single-strand breaks – which arise from excision of damaged bases by the DNA repair glycosylases or endonucleases – as arnputative initiatory factor in this process. Such an indirect mechanism was supported by requirement of the 8-oxoguanine DNA glycosylase (OGG1) for the inhibition of transcription by synthetic 8-oxodG incorporated into a reporter gene and by the delays observed for the inhibition of transcription caused by structurally unrelated base modifications (8-oxoguanine and uracil). It is thereby hypothesized that excision of the modified bases could be a generalrnmechanism for inhibition of transcription by DNA damage which is processed by the base excision repair (BER) pathway. Further gene expression analyses of plasmids containing single-strand breaks or abasic sites in the transcribed sequences revealed strong transcription inhibitory potentials of these lesions, in agreement with the presumption that BER intermediates are largely responsible for the observed effects. Experiments with synthetic base modifications positioned within the defined DNA sequences showed thatrninhibition of transcription did not require the localisation of the lesion in the transcribed DNA strand; therefore the damage sensing mechanism has to be different from the direct encounters of transcribing RNA polymerase complexes with DNA damage.rnAltogether, this work provides new evidence that processing of various DNA basernmodifications by BER can perturb transcription of damaged genes by triggering a gene silencing mechanism. As gene expression can be influenced even by a single DNA damage event, this mechanism could have relevance for the endogenous DNA damage induced in cells under normal physiological conditions, with a possible link to gene silencing in general

    Interactions between DNA damage, repair, and transcription

    No full text
    This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcription is emerging as an important endogenous source of DNA damage in cells, we briefly summarise recent advances in understanding the nature of co-transcriptionally induced DNA damage and the DNA repair pathways involved

    Destabilized green fluorescent protein detects rapid removal of transcription blocks after genotoxic exposure

    No full text
    High stabilities of reporter proteins and their messenger RNAs (mRNAs) interfere with the detection of rapid transient changes in gene expression, such as transcriptional blocks posed by genotoxic DNA lesions. We have modified a green fluorescent protein (GFP) gene within the episomal pMARS vector by addition of a fragment encoding for mouse ornithine decarboxylase (ODC) proline-glutamate-serine-threonine-rich (PEST) sequence in order to target the protein to the proteasomes and achieved an unprecedentedly fast GFP turnover in permanently transfected human cells. As early as 1 h after inhibition of protein synthesis by cycloheximide, the number of fluorescent cells decreased more than 5-fold. Concordantly, treatments with transcription inhibitors a-amanitin and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) resulted in progressive depletion of the destabilized GFP, detected as fluorescence decline, while the stable protein levels were not affected under the same conditions. Moreover, fluorescence of the destabilized but not of normal GFP decreased strongly and in a dose-dependent manner following an instant transcription block induced by ultraviolet-C (UVC) irradiation. In agreement with the transient nature of the transcriptional block due to transcription -coupled DNA repair the GFP fluorescence fully recovered after several hours

    EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions

    No full text
    The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system

    8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein

    No full text
    We have analysed the effect of oxidative guanine lesions on the expression of a transfected reporter gene in mouse embryonic fibroblasts deficient in Cockayne syndrome B protein (Csb) and/or the 8-oxoguanine DNA glycosylase (Ogg1). We used a highly sensitive flow cytometry-based approach and quantitative real-time PCR to measure the changes in gene expression caused by the presence of oxidised guanine residues generated by photosensitisation in the vector DNA. In wild-type cells, small numbers (one or three) of oxidised guanines did not affect gene expression at short times after transfections, whereas progressive reduction of the transgene expression was observed at later time points. Although Ogg1 has a major contribution to the repair of oxidised guanine bases, its absence did not have a strong effect on the gene expression. In contrast, the lack of functional Csb protein caused a pronounced inactivation of the damaged reporter gene. Most strikingly, an additional Ogg1 deficiency significantly attenuated this effect. The results indicate that the processing of oxidative guanine modifications by Ogg1 can mediate host cell inactivation rather than reactivation of the damaged genes and that this effect is strongly enhanced in the absence of Csb
    corecore