20 research outputs found

    СИСТЕМА ЭЛЕКТРОПИТАНИЯ ПОСТОЯННОГО ТОКА С МАГНИТОЭЛЕКТРИЧЕСКИМ ГЕНЕРАТОРОМ

    Get PDF
    The dc power generation system based on permanent-magnet generator and active rectifier is considered. The main energy characteristics of generation system performance are obtainedАнализируется вариант построения системы генерирования электрической энергии постоянного тока на базе магнитоэлектрического генератора и активного выпрямителя. Определены основные энергетические характеристики в различных режимах работы системы

    S-layer protein 2 of 'Lactobacillus crispatus' 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens

    Get PDF
    We have previously demonstrated that human vaginal Lactobacillus crispatus 2029 (LC2029) strain is highly adhesive to cervicovaginal epithelial cells, exhibits antagonistic activity against genitourinary pathogens and expresses surface-layer protein (Slp). The aims of the present study were elucidation of Slp structural and immunomodulatory characteristics and its roles in protective properties of the whole vaginal LC2029 bacteria against foodborne pathogens. Enteric Caco-2 and colon HT-29 cell lines were used as the in vitro models of the human intestinal epithelial layer. LC2029 strain has two homologous surface-layer (S-layer) genes, slp1 and slp2. Whilst we found no evidence for the expression of slp1 under the growth conditions used, a very high level of expression of the slp2 gene was detected. C-terminal part of the amino sequence of Slp2 protein was found to be highly similar to that of the conserved C-terminal region of SlpA protein of L. crispatus Zj001 isolated from pig intestines and CbsA protein of L. crispatus JCM5810 isolated from chicken intestines, and was substantially variable at the N-terminal and middle regions. The amino acid sequence identity between SlpA and CbsA was as high as 84%, whilst the identity levels of these sequences with that of Slp2 were only 49% and 50% (respectively). LC2029 strain was found to be both acid and bile tolerant. Survival in simulated gastric and intestinal juices of LC2029 cells unable to produce Slp2 was reduced by 2-3 logs. Vaginal L. crispatus 1385 (LC1385) strain not expressing Slp was also very sensitive to gastric and intestinal stresses. Slp2 was found to be non-covalently bound to the surface of the bacterium, acting as an adhesin and facilitating interaction of LC2029 lactobacilli with the host immature or fully differentiated Caco-2 cells, as well as HT-29 cells. No toxicity to or damage of Caco-2 or HT-29 epithelial cells were detected after 24 h of colonization by LC2029 lactobacilli. Both Slp2 protein and LC2029 cells induced NF-kB activation in Caco-2 and HT-29 cells, but did not induce expression of innate immunity mediators Il-8, Il-1β, and TNF-α. Slp2 and LC2029 inhibited Il-8 production in Caco-2 and HT-29 cells induced by MALP-2 and increased production of anti-inflammatory cytokine Il-6. Slp2 inhibited production of CXCL1 and RANTES by Caco-2 cells during differentiation and maturation process within 15 days. Culturing Caco-2 and HT-29 cells in the presence of Slp2 increased adhesion of bifidobacteria BLI-2780 to these enterocytes. Upon binding to Caco-2 and HT-29 cells, Slp2 protein and LC2029 lactobacilli were recognized by toll-like receptors (TLR) 2/6. It was shown that LC2029 strain is a strong co-aggregator of foodborne pathogens Campylobacter jejuni, Salmonella enteritidis, and Escherichia coli O157:H used in this study. The Slp2 was responsible for the ability of LC2029 to co-aggregate these enteropathogens. Slp2 and intact LC2029 lactobacilli inhibited foodborne pathogen-induced activation of caspase-9 and caspase-3 as apoptotic biomarkers in Caco-2 and HT-29 cells. In addition, Slp2 and Slp2-positive LC2029 strain reduced adhesion of tested pathogenic bacteria to Caco-2 and HT-29 cells. Slp2-positive LC2029 strain but not Slp2 alone provided bactericidal effect on foodborne pathogens. These results suggest a range of mechanisms involved in inhibition of growth, viability, and cell adhesion properties of pathogenic Proteobacteria by the Slp2 producing LC2029, which may be useful in treatment of necrotizing enterocolitis (NEC) in newborns and foodborne infectious diseases in children and adults, increasing the colonization resistance and maintaining the intestinal homeostasis

    Dismantling and decontamination of large-sized radiation-contaminated equipment during Research Building B decommissioning at the Bochvar Institute site

    Get PDF
    The article presents the results of work on dismantling the large installation equipment of Research Building B at the Bochvar High-technology Research Institute of Inorganic Materials (Bochvar Institute). The works were carried out as part of Building B preparation for decommissioning. The purpose of dismantling the large-sized capacitive equipment was to reconstruct the large installation site for managing radioactive waste generated during Building B decommissioning. The works on decommissioning a radioactively contaminated building within a densely populated district of megalopolis were carried out for the first time. The characteristics of the large-sized capacitive equipment are presented. Radioactive contamination of the capacitive equipment is determined by long-lived a-emitting isotopes: 235U, 238U, 239Pu. The sequence of works on dismantling the radiation-contaminated capacitive equipment includes preparatory work, dismantling the tank piping, localizing radioactive contamination of the external surface of the equipment as well as dismantling and moving it into a transport container. Dismantling and decontamination of the large-sized capacitive equipment was carried out by the Bochvar Institute Decommissioning Department. The following tools were used during the works: (1) a mobile foam decontamination facility to perform decontamination works and (2) a mobile high pressure facility to apply localizing and decontaminating film coatings. The tanks were dismantled by means of low-spark tools, i.e., reciprocating saws. Crane runways were made in order to move the dismantled equipment into transport containers: the movement was carried out with the help of a winch. The main results of dismantling and decontaminating the radioactively contaminated tanks are the dismantling of four units of long-length column-type equipment with heights from 4.2 to 6.4 m and 26 units of capacitive equipment (maximum capacity = 8 m3) as well as decontamination of the internal surfaces of radiation-contaminated equipment (decontamination factor = 25–70). As a result, the activity of the accumulated radioactive waste was reduced (the RW class was changed from 3 to 4). The main conclusion regarding the managment of large-sized radiation-contaminated tanks during Building B decommissioning is as follows: the works were organized and carried out at a high technical level, using modern decontamination and dismantling equipment and modern methods to ensure work safety at the Bochvar Institute site in the city of Moscow

    Suppression of Age-Related Macular Degeneration-like Pathology by c-Jun N-Terminal Kinase Inhibitor IQ-1S

    No full text
    Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. The development of AMD is associated with inflammation, oxidative stress, and progressive proteostasis imbalance, in the regulation of which c-Jun N-terminal kinases (JNK) play a crucial role. JNK inhibition is discussed as an alternative way for prevention and treatment of AMD and other neurodegenerative diseases. Here we assess the retinoprotective potential of the recently synthesized JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S) using senescence-accelerated OXYS rats as a model of AMD. The treatment with IQ-1S (50 mg/kg body weight intragastric) during the period of active disease development (from 4.5 to 6 months of age) improved some (but not all) histological abnormalities associated with retinopathy. IQ-1S improved blood circulation, increased the functional activity of the retinal pigment epithelium, reduced the VEGF expression in the endothelial cells, and increased the expression of PEDF in the neuroretina. The result was a decrease in the degeneration of photoreceptors and neurons of the inner layers. IQ-1S significantly improved the retinal ultrastructure and increased the number of mitochondria, which were significantly reduced in the neuroretina of OXYS rats compared to Wistar rats. It seems probable that using IQ-1S can be a good prophylactic strategy to treat AMD

    Suppression of Age-Related Macular Degeneration-like Pathology by c-Jun N-Terminal Kinase Inhibitor IQ-1S

    No full text
    Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. The development of AMD is associated with inflammation, oxidative stress, and progressive proteostasis imbalance, in the regulation of which c-Jun N-terminal kinases (JNK) play a crucial role. JNK inhibition is discussed as an alternative way for prevention and treatment of AMD and other neurodegenerative diseases. Here we assess the retinoprotective potential of the recently synthesized JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S) using senescence-accelerated OXYS rats as a model of AMD. The treatment with IQ-1S (50 mg/kg body weight intragastric) during the period of active disease development (from 4.5 to 6 months of age) improved some (but not all) histological abnormalities associated with retinopathy. IQ-1S improved blood circulation, increased the functional activity of the retinal pigment epithelium, reduced the VEGF expression in the endothelial cells, and increased the expression of PEDF in the neuroretina. The result was a decrease in the degeneration of photoreceptors and neurons of the inner layers. IQ-1S significantly improved the retinal ultrastructure and increased the number of mitochondria, which were significantly reduced in the neuroretina of OXYS rats compared to Wistar rats. It seems probable that using IQ-1S can be a good prophylactic strategy to treat AMD

    Spin-parity of the 13.35 MeV state and high-lying states around 20 MeV in excitation energy in 12C nucleus

    No full text
    A study of the 11B(3He,d)12C reaction at incident 3He energy Elab = 25 MeV has been performed at the K-130 cyclotron at the University of Jyväskylä, Finland. Differential cross sections have been measured for the 13.35 MeV state and for the states with excitation energy around 20 MeV in 12C. The data were analyzed with the DWBA method. A tentative assignment, 4−, is given for the state at 13.35 MeV in a joint study of the reaction and inelastic scattering of α-particles with the energy of 110 MeV. For the state at 20.98 MeV, the possible spin-parity 3− and the isospin T =0 are assigned for the first time. Our model description of the broad state at 21.6 MeV is consistent with the previous assignments of isospin T = 0 and spin-parity of 2+ or 3−. The excited state at 22.4 MeV may have possible spin-parities of either 6+ or 5−. The collected statistics was insufficient to solve this question. Rotational bands which can exist in 12C were presented.peerReviewe

    Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor

    No full text
    c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis

    Smoothing of structure in the fusion and quasielastic barrier distributions for the 20Ne + 208Pb system

    No full text
    We present simultaneously measured barrier distributions for the 20Ne + 208Pb system derived from largeangle quasielastic scattering and fusion, in the latter case by means of the detection of fission fragments. Both distributions turned out to be smooth, in spectacular disagreement with the results of standard coupled-channels calculations. Namely, they do not posses the strong structure expected from coupled-channels calculations, even if apparently they take into account explicitly all relevant strong couplings. This points to the importance of weak channels, i.e., transfer reactions and scattering connected with noncollective excitations.peerReviewe

    Aggregation-Induced Ignition of Near-Infrared Phosphorescence of Non-Symmetric [Pt(C^N*N’^C’)] Complex in Poly(caprolactone)-based Block Copolymer Micelles: Evaluating the Alternative Design of Near-Infrared Oxygen Biosensors

    No full text
    In the present work, we described the preparation and characterization of the micelles based on amphiphilic poly(ε-caprolactone-block-ethylene glycol) block copolymer (PCL-b-PEG) loaded with non-symmetric [Pt(C^N*N’^C’)] complex (Pt1) (where C^N*N’^C’: 6-(phenyl(6-(thiophene-2-yl)pyridin-2-yl)amino)-2-(tyophene-2-yl)nicotinate). The obtained nanospecies displayed the ignition of near-infrared (NIR) phosphorescence upon an increase in the content of the platinum complexes in the micelles, which acted as the major emission component at 12 wt.% of Pt1. Emergence of the NIR band at 780 nm was also accompanied by a 3-fold growth of the quantum yield and an increase in the two-photon absorption cross-section that reached the value of 450 GM. Both effects are believed to be the result of progressive platinum complex aggregation inside hydrophobic poly(caprolactone) cores of block copolymer micelles, which has been ascribed to aggregation induced emission (AIE). The resulting phosphorescent (Pt1@PCL-b-PEG) micelles demonstrated pronounced sensitivity towards molecular oxygen, the key intracellular bioanalyte. The detailed photophysical analysis of the AIE phenomena revealed that the NIR emission most probably occurred due to the excimeric excited state of the 3MMLCT character. Evaluation of the Pt1@PCL-b-PEG efficacy as a lifetime intracellular oxygen biosensor carried out in CHO-K1 live cells demonstrated the linear response of the probe emission lifetime towards this analyte accompanied by a pronounced influence of serum albumin on the lifetime response. Nevertheless, Pt1@PCL-b-PEG can serve as a semi-quantitative lifetime oxygen nanosensor. The key result of this study consists of the demonstration of an alternative approach for the preparation of NIR biosensors by taking advantage of in situ generation of NIR emission due to the nanoconfined aggregation of Pt (II) complexes inside the micellar nanocarriers
    corecore