82 research outputs found

    Ultra High Energy Cosmic Rays and Inflation Relics

    Get PDF
    There are two processes of matter creation after inflation that may be relevant to the resolution of the puzzle of cosmic rays observed with energies beyond GZK cut-off: 1) gravitational creation of superheavy (quasi)stable particles, and 2) non-thermal phase transitions leading to formation of topological defects. We review both possibilities.Comment: Submitted to Physics Report

    Evolution of the Order Parameter after Bubble Collisions

    Get PDF
    If a first-order phase transition is terminated by collisions of new-phase bubbles, there will exist a period of nonequilibrium between the time bubbles collide and the time thermal equilibrium is established. We study the behavior of the order parameter during this phase. We find that large nonthermal fluctuations at this stage tend to restore symmetry, i.e., the order parameter is smaller than its eventual thermal equilibrium value. We comment on possible consequences for electroweak baryogenesis.Comment: 11 page LaTeX file with two figures, fig1.ps and fig2.p

    Draft genome sequence of Lactobacillus plantarum 2025

    Get PDF
    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain

    Non-equilibrium symmetry restoration beyond one loop

    Get PDF
    We calculate the strength of symmetry restoration effects in highly non-equilibrium states which can arise, for example, during preheating after inflation. We show that in certain parameter range the one-loop results are unstable, requiring summation of multiloop diagrams. We solve this problem for the O(N)O(N) model in the large NN-limit and show that the symmetry restoration may be less effective than what predicted by the one-loop estimate.Comment: Latex, 12 pages, 2 postscript figure

    Synthesis and pharmacological evaluation of indole derivatives as deaza analogues of potent human neutrophil elastase inhibitors

    Get PDF
    A number of N-benzoylindoles were designed and synthesized as deaza analogues of our previously reported potent and selective HNE inhibitors with an indazole scaffold. The new compounds containing substituents and functions that were most active in the previous series were active in the micromolar range (the most potent had IC(50)=3.8 µM) or inactive. These results demonstrated the importance of N-2 in the indazole nucleus. Docking studies performed on several compounds containing the same substituents but with an indole or an indazole scaffold, respectively, highlight interesting aspects concerning the molecule orientation and H-bonding interactions, which could help to explain the lower activity of this new series

    Turbulent Thermalization

    Full text link
    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and initial inflaton amplitude.Comment: 27 pages, 13 figure

    Dynamics of Symmetry Breaking and Tachyonic Preheating

    Get PDF
    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.Comment: 7 pages, 6 figures. Higher quality figures and computer generated movies in gif format illustrating our results can be found at http://physics.stanford.edu/gfelder/hybri

    Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats

    Get PDF
    C-Jun N-terminal kinase (JNK) is activated by various brain insults and is implicated in neuronal injury triggered by reperfusion-induced oxidative stress. Some JNK inhibitors demonstrated neuroprotective potential in various models, including cerebral ischemia/reperfusion injury. The objective of the present work was to study the neuroprotective activity of a new specific JNK inhibitor, IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt), in the model of global cerebral ischemia (GCI) in rats compared with citicoline (cytidine-5?-diphosphocholine), a drug approved for the treatment of acute ischemic stroke and to search for pleiotropic mechanisms of neuroprotective effects of IQ-1S. The experiments were performed in a rat model of ischemic stroke with three-vessel occlusion (model of 3VO) affecting the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. After 7-min episode of GCI in rats, 25% of animals died, whereas survived animals had severe neurological deficit at days 1, 3, and 5 after GCI. At day 5 after GCI, we observing massive loss of pyramidal neurons in the hippocampal CA1 area, increase in lipid peroxidation products in the brain tissue, and decrease in local cerebral blood flow (LCBF) in the parietal cortex. Moreover, blood hyperviscosity syndrome and endothelial dysfunction were found after GCI. Administration of IQ-1S (intragastrically at a dose 50 mg/kg daily for 5 days) was associated with neuroprotective effect comparable with the effect of citicoline (intraperitoneal at a dose of 500 mg/kg, daily for 5 days).The neuroprotective effect was accompanied by a decrease in the number of animals with severe neurological deficit, an increase in the number of animals with moderate degree of neurological deficit compared with control GCI group, and an increase in the number of unaltered neurons in the hippocampal CA1 area along with a significant decrease in the number of neurons with irreversible morphological damage

    Binding of LcrV protein from 'Yersinia pestis' to human T-cells induces apoptosis, which is completely blocked by specific antibodies

    Get PDF
    The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent protective protein that is considered as a vaccine component for humans. LcrV mediates the delivery of Yop toxins into host cells and upregulates TLR2-dependent IL-10 production. Although LcrV can interact with the receptor-bound human interferon-γ (hIFN-γ), the significance of these interactions in plague pathogenesis is not known. In this study, we determined the parameters of specific interactions of LcrV and LcrV68–326 with primary human thymocytes and Jurkat T-leukemia cells in the presence of receptor-bound hIFN-γ. Although the C-terminal region of hIFN-γ contains a GRRA138–141 site needed for high-affinity binding of LcrV and LcrV68–326, in the hIFN-γ homodimer, these GRRA138–141 target sites becomes accessible for targeting by LcrV or LcrV68–326 only after immobilization of the hIFN-γ homodimer on the hIFN-γ receptors of thymocytes or Jurkat T-cells. The interaction of LcrV or LcrV68–326 with receptor-bound hIFN-γ on the thymocytes or Jurkat T-cells caused apoptosis of both cell types, which can be completely blocked by the addition of monoclonal antibodies specific to the LEEL32–35 and DEEI203–206 sites of LcrV. The ability of LcrV to utilize hIFN-γ is insidious and may account in part for the severe symptoms of plague in humans

    Matter Creation via Vacuum Fluctuations in the Early Universe and Observed Ultra-High Energy Cosmic Ray Events

    Get PDF
    Cosmic rays of the highest energy, above the Greisen-Zatsepin-Kuzmin cut-off of the spectrum, may originate in decays of superheavy long-living X-particles. These particles may be produced in the early Universe from vacuum fluctuations during or after inflation and may constitute a considerable fraction of Cold Dark Matter. We calculate numerically their abundance for a wide range of models. X-particles are considered to be either bosons or fermions. Particles that are several times heavier than inflaton, m_inflaton \approx 10^{13} GeV, and were produced by this mechanism, can account for the critical mass in the Universe naturally. In some cases induced isocurvature density fluctuations can leave an imprint in anisotropy of cosmic microwave background radiation.Comment: LaTeX, 9 page
    corecore