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ABSTRACT. The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent 

protective protein that is considered as a vaccine component for humans. LcrV mediates the 

delivery of Yop toxins into host cells and upregulates TLR2-dependent IL-10 production. 

Although LcrV can interact with the receptor-bound human interferon-γ (hIFN-γ), the 

significance of these interactions in plague pathogenesis is not known. In this study, we 

determined the parameters of specific interactions of Lcrv and LcrV68-326 with primary human 

thymocytes and Jurkat T-leukemia cells in the presence of receptor-bound hIFN-γ. Although the 

C-terminal region of hIFN-γ contains a GRRA138-141 site needed for high-affinity binding of 

LcrV and LcrV68-326, in the hIFN-γ homodimer, these GRRA138-141 target sites becomes 

accessible for targeting by LcrV or LcrV68-326 only after immobilization of the hIFN-γ 

homodimer on the hIFN-γ receptors of thymocytes or Jurkat T-cells. The interaction of LcrV or 

LcrV68-326 with receptor-bound hIFN-γ on the thymocytes or Jurkat T-cells caused apoptosis of 

both cell types, which can be completely blocked by the addition of monoclonal antibodies 

specific to the LEEL32-35 and DEEI203-206 sites of LcrV. The ability of LcrV to utilize hIFN-γ is 

insidious and may account in part for the severe symptoms of plague in humans. 

 

1. Introduction 

The plague caused by Yersinia pestis is the most devastating bacterial infection known to man 

[1]. Y. pestis recently evolved from Yersinia pseudotuberculosis, which diverged from Yersinia 

enterocolitica about 50 million years ago [2]. All three species share an ~70-kb plasmid (termed 

pCD in Y. pestis [3] and pYV in enteropathogenic Y. pseudotuberculosis and Y. enterocolitica) 

that encodes the V antigen (LcrV), yersiniae outer proteins (Yops), and an attendant type 3 
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secretion system (T3SS). The functions of T3SS are activated by pCD/pYV-encoded LcrF (VirF 

in enteropathogenic yersinia) [4] at 37ºC [5] and expressed upon host cell contact [6] or 

residence in Ca
2+

-deficient medium [7] and host fluids [8]. The most important feature of the 

plague is that it is a rapidly progressing disease, suggesting that Y. pestis prevents the activation 

of the innate immune response to infection as first shown for pCD-dependent downregulation of 

proinflammatory cytokines [9]. LcrV is a multifunctional protein and serves as a major regulator 

and effector of virulence. At the first stage of plague pathogenesis, LcrV acts as a short-term 

weapon of Y. pestis [10, 11]. LcrV forms a tip on the YscF nanotube of T3SS injectosome [12] 

and mediates translocation of Yop effectors into the target cells [13] for the initiation of bacterial 

growth in host organs and the buildup of bacterial cells that release sufficient amounts of 

secreted LcrV to induce effective levels of interleukin 10 (IL-10) at the next stage of 

pathogenesis, when it acts as a long-term weapon for Y. pestis [10, 11, 14]. This strategy also 

involves the production of noninflammatory lipopolysaccharide [15], degradation of those Yops 

that fail to undergo translocation into the host cell cytoplasm [16], inhibition of host MAPK 

kinase and NF-kB pathways by YopJ, resulting in apoptosis of professional phagocytes [17-19], 

and induction of mitochondrial-dependent apoptosis of T-cells by YopH [20] or by YpkA [21]. 

Deletion of YopJ did not result in decreased virulence of Y. pestis, systemic spread, or 

colonization levels in the spleen and blood [22]. At the same time, deletion of LcrV converted 

virulent strains of Y. pestis into avirulent ones [23, 24]. Although antibodies to Yop proteins 

could be found in the sera of both people and animals that survived a plague infection or were 

vaccinated with live plague vaccine, their protective potential is insufficient to be used in a 

subunit vaccine [25]. In contrast, the passive transfer of both LcrV-specific polyclonal or 

monoclonal antisera protected experimental animals against bubonic and pneumonic plague [23, 
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24, 26-32]. Sub-unit vaccines based on LcrV or LcrV+F1 proteins provided a high degree of 

protection in mice, guinea pigs, and nonhuman primates [33-41].  

Y. pestis replicates whiting lymphoid tissues. Because LcrV derivatives and anti-LcrV 

antibodies are being developed for prevention and prophylaxis against plague in humans, it is 

important to better understand the detailed mechanisms of all effects of LcrV, their relative 

importance in plague pathogenesis and inhibiting of Yops effects, such as the target-cell killing 

of human T lymphocytes prevented by anti-LcrV antibodies. Earlier we demonstrated that LcrV 

possesses two non-cooperative binding domains (LEEL32-35 and DEEI203-206) capable of 

recognizing human IFN-γ but not mouse IFN-γ bound to its receptors (IFN-γ R-IFN-γ) on human 

U-937 cells and human alveolar macrophages [42]. Human IFN-γ, but not mIFN-γ, possessed a 

GRRA138-141 site on the C-terminus of the molecule responsible for the high-affinity specific 

binding of LcrV [42]. The purpose of the present study was to obtain information regarding the 

specificity and avidity of the interaction between LcrV and hIFN-γ bound to its receptors on the 

surface of human primary thymocytes and Jurkat T-leukemia cells. We show here that LcrV uses 

receptor-bound hIFN-γ for initiation of apoptosis of human T-cells. Monoclonal anti-LcrV 

antibodies completely blocks the programmed death of human T-cells induced by LcrV and 

LcrV68-326. 

                                                                                                                                                                            

Materials and Methods 

Recombinant Proteins  

LcrV (defined in Figure 1A) was produced as described previously [42] using lcrV encoded 

within the lcrGVH-yopBD operon of pCD1 from the Y. pestis strain KIM [43]. After 

amplification with PCR using sites for EcoRI and BamHI, lcrV was inserted into the vector 
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pRSET A (Invitrogen, Carlesbad, CA) opened with BamHI and EcoRI. This construct, expressed 

in Escherichia coli BL21(DE3), encoded N-terminal hexahistidine, an enterokinase cleavage 

site, and then LcrV in its entirety. Similar engineering of E. coli BL21(DE3) transformed with 

pVHB62 encoding LcrV68-326 has been described [36]. LcrV and LcrV68-326 encoded by these 

constructs were induced by IPTG, purified to homogeneity by Ni-affinity chromatography, and 

then freed of hexahistidine by treatment with enterokinase [36].
 
Homogeneous dimers of LcrV 

and LcrV68-326 were purified by gel-filtration on Sepharose CL-4B column (Sigma Chemical Co., 

St. Louis, MO). Endotoxin was removed from the preparations of purified protein using 

polymyxin B-agarose (Sigma). Endotoxin-depleted preparations contained 0.16 ± 0.03 pg (mean 

± SE, n =5) of endotoxin/µg of protein as measured by the Limulus amebocyte lysate assay 

system. Preparations of recombinant human IFN-γ (antiviral activity of 2.0×10
7 

U/mg) and C-

terminally truncated h∆IFN-γ (antiviral activity 1.5×10
7 

U/mg) lacking six C-terminal amino 

acids as defined in Figure 1C and  mouse IFN-γ were kindly supplied by Dr. V. Fedyukin (JSC 

“ImmunoPharm”, Obolensk, Russia). Circular dichroism spectra of hIFN-γ and h∆IFN-γ were 

almost identical. Highly purified human IFN-α2 was purchased from PeproTech, Ltd. (London, 

U.K.). Purity of recombinant proteins was monitored by SDS-PAGE and silver staining [44]. 

 

Synthetic Peptides  

Derivatives of LcrV (Figure 1B) were synthesized as described [42] using a solid-phase model 

9500 peptide synthesizer (Biosearch Technologies, Inc., Novato, CA) and purified by HPLC 

chromatography. The purity and sequence of these peptides were confirmed by amino acid 

analysis and mass spectrometry.  
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Cell Cultures and Growth Conditions 

Normal human thymocytes were obtained from children aged up to 4 months that underwent 

thymus removal during cardiac surgery (Cardiocenter, Moscow, Russia). During the period of 

our studies, Cardiocenter had a protocol approved by its ethical committee for the surgical 

treatment of congenital heart diseases, according to which, in order to get the access to the heart, 

a part of the sternum was removed along with a part of the thymus. After performing a heart 

surgery, the post-surgical material was disposed. The study of the properties of thymocytes 

isolated from post-surgical material was approved by the ethical committee of Cardiocenter and 

Ethical Committee of the Institute of Immunological Engineering. Suspension of individual cells 

was obtained via thymus disintegration and following purification using gradient centrifugation 

in Ficol Hypaqu. Thymocytes were washed thrice in an RPMI 1640 medium containing 2% fetal 

calf serum (FCS). Cell vitality was determined using methylene blue and reached 98% [45]. 

Jurkat T-leukemia cells were kept at logarithmic growth in TPMI 1640 medium supplemented 

with 10% FCS, 2 mM L-glutamin,1 mM sodium pyruvate, nonessential amino acids and 100 

unit/ml each penicillin G and streptomycin. 

 

Monoclonal Mouse Anti-LcrV Antibodies  

Peptides from LcrV31-50 and LcrV193-210 (defined in Figure 1B), which contained active sites 

LEEL and DEEI responsible for the binding to human IFN-γ, were resynthesized for including a 

C-terminal cysteine and conjugated to keyhole limpet hemocyanin (KLH) through this additional 

residue. The peptide-carrier conjugates were purified by gel-filtration and used for elaboration of 

mouse monoclonal antibodies. 
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Polyclonal Rabbit Anti-LcrV and Anti-hIFN-γ Antibodies  

Human IFN-γ and LcrV protein were adsorbed to aluminum hydroxide. The conjugates were 

used for the immunization of rabbits. Two groups of rabbits up to 3 animals (chinchilla, 2.5 kg) 

in each group were used for immunization and obtaining anti-hIFN-γ and anti-LcrV sera. The 

titer of rabbit sera for hIFN-γ and LcrV had an average value of 500,000. Polyclonal anti-hIFN-γ 

and anti-LcrV antibodies were elaborated by chromatography on the protein A-Cepharose 

column. 

 

Radiolabeling of Ligands  

125
I-LcrV and 

125
I- LcrV68-326 (all 0.09 mCu/µg), as well as iodinated hIFN-γ, h∆IFN-γ, mIFN-

γ, and hIFN-α2 (all 0.1 mCu/µg) were prepared with Iodo-Gen (Pierce, Rockford, IL) [46] and 

23
Na

125
I and then separated by chromatography on the Sephadex G-25 column.  

 

Binding of the Radioactive Ligands the Cells  

Normal human thymocytes or Jurkat T-leukemia cells were collected, washed three times with 

RPMI-1640 medium, and then adjusted to a concentration of 10
7
 per mL of the same medium. 

Radioactive ligands were then added to individual cultures (total volume of 300 µL), which were 

then incubated for either 1 h at 4°C or 15 min at 37°C. Thereafter, 50 µL of the cell culture was 

layered on 250 µL of an n-dibutylphthalate/bis (2-ethylhexyl)-phthalate mixture (1:1 v/v) and 

centrifuged for 2 min at 14,000 g. Radioactivity in the resulting precipitate was measured using a 

model 1275 MINI GAMMA counter (LKB WALLAC, Sweden). Nonspecific binding of 

radioactive ligands to cells or plastic plates was determined by incubation in 10,000-fold excess 

of corresponding unlabeled ligand and was equal to 25-27% of the total (specific plus 
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nonspecific) binding. Results were expressed as the (mean ±SEM, n= 3) in molarity, from which 

nonspecific binding was subtracted. An essentially identical procedure was used to determine 

dissociation constants of radioactive LcrV and radioactive LcrV68-326 from hIFN-γ immobilized 

on PVC flat bottom 96 multi-well plates. 

 

Apoptotic Activity of LcrV 

LcrV-induced apoptosis of human thymocytes and Jurkat T-leukemia cells was measured by 

determining light scattering and red fluorescence as described earlier [47]. Thymocytes were 

cultivated for 24 h as described above and then exposed to LcrV with or without hIFN-γ 

followed by continued incubation for another 24 h. The cells were then fixed with 70% ethanol 

to permeabilize the cell membrane and suspended into PBS containing triton-100 (Sigma). 

Propidium iodide (Sigma) diluted in PBC (containing 0.1% triton X-10 and 0.1% sodium citrate) 

was then added to this preparation to yield a final concentration of 0.05 mg/ml. Analysis was 

undertaken with a FACS Calibur Fluid Cytofluorimeter (Becton-Discinson, USA with argon 

laser (488 nm wavelength) using forward and side light scattering). Red fluorescence was 

evaluated by propidium iodide for 10,000 cells and expressed in histograms as peak M1 (which 

is the hypodiploid peak in percent that characterizes apoptotic cells in which DNA is fragmented, 

and as a result, after washing of these cells, they contain an amount of DNA below the diploid 

chromosome <2N), peak M2 (which is the diploid peak in percent that characterizes the resting 

cells in the phase G0 and the cells that are in the presynthetic phase of the G1 cell cycle and 

which contain the amount of DNA corresponding to the diploid set of chromosomes of 2 N), and 

peak M3 (a proliferation peak in percentage that characterizes the proliferative potential of cells 
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in the pre-intolerant phase of G2 and mitosis phase M when the number of chromosomes and the 

DNA content is doubled by 4N). Data analysis was conducted using the CELLQUEST software. 

 

Computational analysis of intrinsic disorder propensity 

The amino acid sequence of human IFN-γ protein was used for the sequence-based analysis of 

intrinsic disorder predisposition. The per-residue intrinsic disorder of the protein was evaluated 

by several commonly used disorder predictors, such as PONDR
®
 VLXT [48], PONDR

®
 VSL2 

[49], PONDR
®
 VL3 [50], PONDR

® 
FIT [51], and IUPred [52]. These tools were selected based 

on their specific features. PONDR
®
 VSL2 [49] is one of the more accurate stand-alone disorder 

predictors [49, 53, 54]. PONDR
®
 VL3 is characterized by high accuracy for predicting long 

intrinsically disordered regions [55], and PONDR
®
 VLXT is known to have high sensitivity to 

local sequence peculiarities and can be used for identifying disorder-based interaction sites [56]. 

IUPred was designed to recognize intrinsically disordered protein regions (IDPRs) from the 

amino acid sequence alone based on the estimated pairwise energy content [52, 57]. Finally, the 

metapredictor PONDR
® 

FIT is more accurate than each of its component predictors (PONDR
®

 

VLXT [56], PONDR
®
 VSL2 [49], PONDR

®
 VL3 [50], FoldIndex [58], IUPred [52], and 

TopIDP[59]) [51]).  

 

Results   

The human IFN-γ molecule is a noncovalent homodimer that consist of two identical 17-kDa 

polypeptide chains [60]. The crystal structure of hIFN-γ confirmed its dimeric nature and 

revealed that two polypeptides self-associate in an antiparallel fashion, producing a molecule that 

exhibits a two-fold axis of symmetry [61]. Only the homodimeric form of hIFN-γ demonstrates 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

10 

 

full biological activity [62]. In our experiments, we used LcrV as a non-covalent homodimer that 

consist of two identical 35.8 kDa polypeptide chains and LcrV68-326 as a non-covalent 

homodimer that consist of two identical 28.5 kDa polypeptide chains (data not shown). 

Radioactive 
125

I-LcrV and 
125

I- LcrV68-326 (defined in Figure 1A) did not interact with hIFN-γ 

and h∆IFN-γ (the amino acid sequences of C-terminal regions of these proteins are shown in 

Figure 1C) immobilized on the surface of plastic plate (Table 1). Radioactive 
125

I- hIFN-γ and 

125
I-h∆IFN-γ did not interact with LcrV and LcrV68-326 immobilized on the surface of plastic 

plate (Table 1). These results provide strong evidence that LcrV and LcrV68-326 do not interact 

with hIFN-γ and h∆IFN-γ in the used experimental model, where one of the potential partners is 

immobilized on the surface of the plastic plate. In the next series of experiments, we used Jurkat 

T-leukemia cells and normal primary human thymocytes for immobilization of hIFN-γ and 

h∆IFN-γ on the surface of IFN-γ receptors expressed on these cells. Labeled 
125

I-hIFN-γ and 
125

I-

h∆IFN-γ were bound to IFN-γ receptors on the surface of Jurkat T-cells at low Kd values of (3.6± 

0.5)×10
-10

 M and (7.8±0.4) ×10
-10

 M, respectively (Table 2). The C-terminal regions of 

recombinant hIFN-γ, hΔIFN-γ, and mIFN-γ contain the KRKRS amino acid sequence (Figure 

1C) responsible for the high-affinity binding to IFN-γR [63, 64]. However, only hIFN-γ but not 

hΔIFN-γ and mIFN-γ contains the GRRA amino acid sequence in its C-terminal region (Figure 

1C). This motif is responsible for the high-affinity interactions with LcrV or LcrV68-326 [42]. 

Labeled 
125

I-LcrV alone and labeled 
125

I-LcrV68-326 alone did not bind to the Jurkat T-cells (Table 

2). However, labeled 
125

I-LcrV and 
125

I-LcrV68-326 were able to bind to Jurkat T-cells only in the 

presence of hIFN-γ, but not in the presence of h∆IFN-γ or anti-LcrV monoclonal antibodies 

(MABs). Kd values of interactions between Jurkat T-cells and labeled 
125

I-LcrV or labeled 
125

I-

LcrV68-326 in the presence of hIFN-γ were (5.2±0.3)×10
-10

 M and (4.6±0.4)×10
-10

 M, respectively 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

11 

 

(Table 2). Labeled 
125

I- hIFN-γ, 
125

I-h∆IFN-γ, 
125

I-hIFN-α2, and 
125

I-mIFN-γ were bound to the 

receptors on the surface of human primary thymonocytes at low Kd values of (4.8±0.3)×10
-10

 M, 

(6.7±0.5)×10
-10

 M, (5.0±0.4)×10
-10

 M, and (2.9±0.2)×10
-10

 M, respectively (Table 3). Labeled 

125
I-LcrV alone and labeled 

125
I-LcrV68-326 alone did not bound to human thymocytes (Tables 3 

and 4). Labeled 
125

I-LcrV and 
125

I-LcrV68-326 were able to bind to human thymocytes in the 

presence of hIFN-γ, but not in the presence of h∆IFN-γ, hIFN-α2, mIFN-γ or anti-LcrV MABs 

(Tables 3 and 4). Kd values of interactions between thymocytes and labeled 
125

I-LcrV or labeled 

125
I-LcrV68-326 in the presence of hIFN-γ were (2.7±0.6)×10

-10
 M and (3.5±0.4)×10

-10
 M, 

respectively (Tables 3 and 4). LcrV alone and hIFN-γ alone did not induce apoptosis in Jurkat T-

cells (Figure 2 A, B). At simultaneous addition of LcrV and hIFN-γ into the culture medium, the 

hypodiploid peak was increased, reflecting the induction of apoptosis in Jurkat T-cells (Figure 

2C) in comparison to the experiments where LcrV alone (Figure 2A) or hIFN-γ alone (Figure 

2B) were added into the medium. The diploid peak and proliferation peak were considerably 

lower (Figure 2C) in comparison to the experiments, where LcrV alone (Figure 2A) or hIFN-γ 

alone (Figure 2B) were added into the medium. LcrV alone or LcrV68-326 alone and hIFN-γ alone 

did not induced apoptosis in human thymocytes (Tables 5 and 6). The addition of LcrV or 

LcrV68-326 together with hIFN-γ but not with h∆IFN-γ, hIFN-α2, or mIFN-γ in medium induced 

apoptosis in human thymocytes (Tables 5 and 6). In the presence of LcrV or LcrV68-326 and 

hIFN-γ, apoptosis reached 45-50%. 

Monoclonal antibodies specific to the LEEL32-35 and DEEI203-206 binding sites of Lcrv (these 

sites are responsible for the interaction with the GRRA138-141 binding site of hIFN-γ) completely 

blocked programmed cell death induced by LcrV and LcrV68-326 in the presence of hIFN-γ 

(Tables 5 and 6). Together, all these results show that LcrV and LcrV68-326 in the presence of 
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hIFN-γ bound to hIFN-γ receptors are potent activators of programmed cell death in both Jurkat 

T-cells and human primary thymocytes. More importantly, treatment of cells with monoclonal 

antibodies against LEEL32-35 and DEEI203-206 binding sites of LcrV completely blocks the 

programmed death induced by LcrV or LcrV68-326. 

 

Discussion 

To assess the protective properties of new anti-plague vaccines for humans, mice are most 

often used as a relevant model organism. The terminal murine plague is an anti-inflammatory 

disease [9], and LcrV contributes to this process [14] by upregulating IL-10 [65, 66], a powerful 

anti-inflammatory cytokine that prevents expression of a variety of host inflammatory factors 

[67, 68]. The obtained results indicate that LcrV and LcrV68-326 can efficiently interact with the 

hIFN-γ immobilized on the IFN-γ receptors of Jurkat T-cells or human thymocytes, but not with 

the hIFN-γ in solution or with the hIFN-γ immobilized on plastic plates. These observations 

suggest that the two binding sites GRRA138-141 responsible for interaction of the hIFN-γ 

homodimers with LcrV and LcrV68-326 are not accessible in solution or after immobilization of 

hIFN-γ homodimers on the plastic plates. In contrast, the binding sites LEEL32-35 and DEEI203-206 

on the LcrV molecule are accessible in solution [69].  

The crystal structure of a complex between human IFN-γ homodimer and two extracellular 

domains of soluble IFN-γ receptor α-chains was resolved [70, 71]. Figure 3A represents structure 

of this complex and show that each IFN-γ monomer contacts one soluble receptor α-chain. As a 

result, an IFN-γ homodimer serves as a linker between the two IFN-γ receptor α-chains (IFN-

γRα-chains). According to Walter and colleagues [70], each protomer of the IFN-γ homodimer 

consists of six helices (A, B, C, D, E, and F) related by a non-crystallographic twofold axis. 
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Figure 3B shows that the human IFN-γ homodimer is characterized by a highly intertwined 

structure, where two C-terminal α-helices (E and F) of one protomer interact with the helices A, 

B, C, and D of another protomer. It was also pointed out that the 13 residue-long AB loop of one 

protomer encircle the α-helix F of another protomer [70, 71]. Also, in both protomers, the main 

chain after the α-helix F (after residue 122) extends to the solvent away from the protein 

molecule [70]. Overall, it was pointed out that the dimeric structure of human IFN-γ is stabilized 

by the intertwining of helices across the subunit interface with multiple intersubunit interactions 

[61]. Such intertwined structure of the homodimer suggests that it is formed as a result of 

binding-induced folding [72-74]. In other words, it seems that the human IFN-γ is not stable in 

its monomeric form. In agreement with this hypothesis, Figure 3C shows the results of the 

intrinsic disorder propensity analysis of this protein by a set of commonly used disorder 

predictors, PONDR
®
 VLXT, PONDR

®
 VL3, PONDR

®
 VSL2, PONDR

®
 FIT, IUPred_short, and 

IUPred_long. This analysis suggested that the C-terminal half of human IFN-γ is indeed 

characterized by high intrinsic disorder predisposition, and the C-tail of this protein 

(approximately the last 20 residues) is entirely disordered (see Figure 3C). However, it is known 

that the intrinsically disordered proteins or proteins with intrinsically disordered regions are 

frequently involved in protein-protein interactions and molecular recognitions [56, 75-87] and 

undergo at least partial disorder-to-order transitions upon binding [56, 79, 87-94]. These 

observations were utilized to develop computational tools for the identification of potential 

disorder-based binding sites. Application of one of such tools, the ANCHOR algorithm [95, 96], 

revealed that human IFN-γ contains several such potential binding sites, including C-terminally 

located regions spanning residues 113-117 and 135-136. These observations are in agreement 
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with the results of earlier investigations showing that the C-terminal region of human IFN-γ is 

important for biological activity of this protein [63, 64].     

Comparison of the crystal structures of IFN-γ homodimer alone (PDB ID: 1HIG) [61], or in 

complex with two extracellular domains of soluble IFN-γ receptor α-chains was resolved (PDB 

ID: 1FG9) [70, 71], or complexed with the IFN-γ-binding protein from Ectromelia virus (ECTV) 

(IFN-γBPECTV; PDB ID: 3BES) [97] revealed that although interaction with these partners 

virtually did not affect the structure of the “body” of the IFN-γ molecule, the C-terminal tail 

underwent noticeable structural changes (see Figure 3D). In fact, in the resolved crystal structure 

of the IFN-γ homodimer alone (PDB ID: 1HIG) [61], the C-tail contains only the residues 

AELSPA, whereas the major part of the C-terminal region (residues 

AKTGKRKRSQMLFRGRRASQ) is absent (see blue structure in Figure 3D), despite the fact 

that the full-length mature protein was used in these crystallization experiments. The fact that the 

C-terminal residues are not visible in the corresponding crystal structure (i.e., represent a missing 

electron density region) indicates their high conformational flexibility. In a complex of the 

human IFN-γ homodimer with two extracellular domains of IFN-γR α-chains (PDB ID: 1FG9) 

[70, 71], the resolved structure of the IFN-γ C-tail is extended to include residues AELSPAAKT 

(see red structure in Figure 3D), whereas the remaining part of C-tail is still missing. Finally, 

complexation with IFN-γBPECTV (PDB ID: 3BES) [97] caused the most noticeable structuration 

of the IFN-γ C-tail, since in this complex, the resolved structure of this region includes residues 

AELSPAAKTGKRKRS, where an additional short α-helix is formed (see green structure in 

Figure 3D). These data clearly indicate that the peculiarities of structural organization of the C-

tail of human IFN-γ depend strongly on a binding partner. Therefore, based on the analysis of the 

available structural information, one can hypothesize that, after interaction of the human IFN-γ 
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homodimer with two IFN-γR α-chains, some conformational changes take place in the IFN-γ 

homodimer, as a result of which two GRRA138-141 binding sites localized at the C-terminal ends 

of the human IFN-γ homodimer accommodate a structure suitable for interaction with LcrV and 

LcrV68-326 homodimers. The appearance of two binding cites for LcrV or LcrV68-326 homodimers 

on IFN-γ homodimer after the formation of the [IFN-γR α-chains-IFN-γ homodimer] complex is 

shown by arrows on Figure 3A.  

The IFN-γ receptor α-chain is expressed at moderate levels on the surfaces of nearly all cells of 

the human organism, being especially abundantly expressed on the surface of T-cells. The gene 

of the IFN-γ receptor α-chain (IFNGR1) belongs to housekeeping genes, and the expression of 

this gene appears to be constitutive [98]. In contrast, the expression of the IFN-γ receptor β chain 

in certain cell types is regulated by external stimuli. Regulation of the IFN-γ receptor β chain 

gene is a critical factor in determining IFN-γ responsiveness in certain cells. Overall, both IFN-γ 

receptors play a critical role in providing innate and adaptive resistance of the host to microbial 

infections [99-101]. Modifications in the human IFN-γ receptor resulted in a severe susceptibility 

of hosts to weakly pathogenic mycobacterial species [102, 103]. The IFN-γ receptor α chain 

knock-out mice (IFN-γ-Rα
-/-

) displayed a greatly impaired ability to resist infection caused by a 

variety of microbial pathogens [99, 101].  

We show here that the interaction of LcrV and LcrV68-326 with hIFN-γ but not with mIFN-γ 

induces apoptosis of human Jurkat T-cells and human normal primary thymocytes. These data 

provide the first conclusive evidence that plague pathogenesis in human and mouse can differ. It 

should be kept in mind that to objectively assess the protective properties of new anti-plague 

vaccines for humans in pre-clinical studies, using several model organisms, including mice, is 

required. We also show that treatment of human T-cells with monoclonal antibodies specific to 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

16 

 

the LEEL32-35 and DEEI203-206 binding sites of LcrV completely blocked the programmed cell 

death induced by LcrV or LcrV68-326.  

Apoptosis induction in T-cells is most commonly initiated in response to death receptor 

ligation, peptideresulting in activation of caspase-8 (extrinsic pathway) [104], or cellular stress 

followed by mitochondrial release of cytochrome c and subsequent activation of caspase-9 

(intrinsic pathway) [105]. Apoptosis activation can be a very complex process, making it 

difficult to specifically implicate a single pathway responsible for the induction of cell death. 

The molecular mechanisms that initiates apoptosis of human T-cells after LcrV interaction with 

receptor-bound human IFN-γ will be elucidated in our subsequent studies. 
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Figure Legends 

Figure 1. Amino acid sequences of LcrV and target peptides, and primary structures of the C-

terminal regions of human and mouse interferons used in the study. 

(A) Primary structure of LcrV from Y. pestis KIM,
[3]

 where the amino acids of the construct 

(LcrV68-326) first used to prove ability to raise protective antibodies
[28]

 and demonstrate 

amplification of IL-10 (ref.
[66]

) are shown in red. Amino acid sequences used to generate 

synthetic peptides are shown in bold. LEEL and DEEI binding sites responsible for the 

interaction with receptor-bound hIFN-γ (ref.[42]) are underlined;  

(B) Synthetic peptides LcrV31-50 containing LEEL binding site and LcrV193-210 containing DEEI 

binding site both responsible for the interaction with receptor-bound hIFN-γ (shown in bold red) 

are underlined;  

(C) Alignment of amino acid sequences of C-terminal regions of human IFN-γ (hIFN-γ), 

truncated human IFN-γ (h∆IFN-γ), and mouse IFN-γ (mIFN-γ), where identical amino acids are 

underlined and the GRRA site responsible for the binding LcrV [42] is shown in bold red. 

Figure 2. Apoptosis induction in Jurkat T-cells at combined addition of LcrV and human IFN-γ 

into the culture medium. Staining with propidium iodide. Apoptosis was evaluated by the 

definition of the events in the hypodiploid peak. Data are from one experiment representative of 

four independent experiments. 

Figure 3. Structural analysis and intrinsic disorder propensity of IFN-γ.  

(A) Crystal structure of a complex between the human IFN-γ and the extracellular domain of the 

IFN-γ receptor α-chain (PDB ID: 1FG9). The two chains that comprise a biologically active IFN-

γ homodimer are shown in blue and red. Each IFN-γ monomer contacts one extracellular of 
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domain IFN-γ receptor α-chain shown as yellow and green surfaces. Red and blue arrows show 

two opened GRRA138-141 sites in the C-terminal regions of IFN-γ homodimer that can be used for 

the high-affinity specific targeting by LcrV homodimer. 

(B) Zoomed in structure of the human IFN-γ homodimer (PDB ID: 1FG9). The two chains that 

comprise a biologically active IFN-γ homodimer are shown in blue and red. One of the 

monomers is shown in the translucent form to simplify representation of this highly intertwined 

homodimer. Red and blue “N” and “C” characters show locations of N- and C-termini of the 

corresponding monomers.  

(C) Evaluation of the intrinsic disorder propensity of the mature form of human IFN-γ (residues 

24-166 of UniProt ID: P01579) by a set of commonly utilized disorder predictors, PONDR
®

 

VLXT, PONDR
®
 VL3, PONDR

®
 VSL2, PONDR

®
 FIT, IUPred_short, and IUPred_long. 

Positions of α-helices in the protein are shown by cyan bars. Light pink shadow around 

PONDR
®
 FIT curve shows distribution of errors. 

(D) Multiple structural alignment of crystal structures of human IFN-γ alone (blue structure, 

PDB ID: 1HIG) [61], or in complex with two extracellular domains of soluble IFN-γ receptor α-

chains (red structure, PDB ID: 1FG9) [70, 71], or complexed with the IFN-γ-binding protein 

from Ectromelia virus (ECTV) (green structure, IFN-γBPECTV; PDB ID: 3BES) [97]. Multiple 

structural alignment was conducted using MultiProt web server 

(http://bioinfo3d.cs.tau.ac.il/MultiProt/) [106]. Structures were visualized using the Visual 

Molecular Dynamics VMD 1.8.7 package [107]. 
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Table 1. Protein- protein interaction studies of LcrV and LcrV68-326 with human IFN-γ and 

human ∆IFN-γ. 

Radioactive protein in 

solution 

Protein immobilized on 

plastic plates 

Dissociation constant, (M) 

125
I- LcrV hIFN-γ* ≥ 10-1

 
125

I- LcrV68-326 hIFN-γ* ≥ 10-1
 

125
I- LcrV h∆IFN-γ* ≥ 10-1

 
125

I- LcrV68-326 h∆IFN-γ* ≥ 10-1
 

125
I- hIFN-γ LcrV** ≥ 10-1

 
125

I- hIFN-γ LcrV68-326** ≥ 10-1
 

125I- h∆ IFN-γ LcrV** ≥ 10-1
 

125I- h∆IFN-γ LcrV68-326** ≥ 10-1
 

Controls 
125

I- LcrV PABs against LcrV (3.6±0,4)×10
-7

 
125

I- LcrV68-326 PABs against LcrV68-326 (4.2±0.3)×10
-7

 
125

I- hIFN-γ PABs against hIFN-γ (1.6±0.2)×10
-8

 
125I- h∆IFN-γ PABs against hIFN-γ (2.8±0.5)×10

-8
 

* Absorption of hIFN-γ or h∆IFN-γ and  

** Absorption of LcrV or LcrV68-326 on the plastic plate surface were controlled by FITC-labeled 

polyclonal rabbit anti h IFN-γ, anti- LcrV, anti- LcrV68-326 antibodies (PABs). 
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Table 2. Specific binding of radioactive LcrV and LcrV68-326 in the presence of human IFN-γ and 

human ∆IFN-γ to Jurkat cells. 

Ligand Dissociation constant, (M) 
125

I- LcrV ≥ 10-3
 

125
I- LcrV68-326  ≥ 10-3

 
125

I- LcrV + hIFN-γ (5.2±0.3)×10
-10

 
125

I- LcrV68-326 + hIFN-γ (4.6±0.4)×10
-10

 
125I- LcrV + h∆IFN-γ a ≥ 10-3

 
125

I- LcrV68-326 + h∆IFN-γ ≥ 10-3
 

125
I- LcrV + hIFN-γ + Anti- LcrV MABs 

b
 ≥ 10-3

 
125

I- LcrV68-326  + hIFN-γ + Anti- LcrV 

MABs 
≥ 10-3

 

Controls 
125

I- hIFN-γ (3.6±0.5)×10
-10

 
125I- h∆IFN-γ (7.8±0.4)×10

-10
 

a Human ∆IFN-γ lacking the first six C-terminal amino acids.  
b
 Mouse monoclonal antibodies against peptide  LcrV31-50 containing binding site LEEL and 

peptide  LcrV193-210 containing binding site DEEI (these sites are responsible for the interaction 

with h IFN-γ). 
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Table 3. Specific binding of radioactive LcrV in the presence of human IFN-γ, human ∆IFN-γ, 

human IFN-α2, and mouse IFN-γ to human thymocytes. 

Ligand Dissociation constant, (M) 
125

I- LcrV ≥ 10-3
 

125
I- LcrV + hIFN-γ (2.7±0.6)×10

-10
 

125I- LcrV+ h∆IFN-γ a ≥ 10-3
 

125
I- LcrV+ hIFN-α2 ≥ 10-3

 
125

I- LcrV+ mIFN-γ ≥ 10-3
 

125
I- LcrV + hIFN-γ + Anti- LcrV MABs 

b
 ≥ 10-3

 

Controls 
125

I- h IFN-γ (4.8±0.3)×10
-10

 
125I- h∆IFN-γ (6.7±0.5)×10

-10
 

125
I- hIFN- α2 (5.0±0.4)×10

-10
 

125
I- mIFN-γ (2.9±0.2)×10

-9
 

a Human ∆IFN-γ lacking the first six C-terminal amino acids.  
b
 Mouse monoclonal antibodies against peptide  LcrV31-50 containing binding site LEEL and 

peptide  LcrV193-210 containing binding site DEEI (these sites are responsible for the interaction 

with hIFN-γ). 

 

 

Table 4. Specific binding of radioactive LcrV68-326 in the presence of human IFN-γ, human 

∆IFN-γ, human IFN-α2, and mouse IFN-γ to human thymocytes. 

Ligand Dissociation constant, (M) 
125

I- LcrV68-326  ≥ 10-3
 

125
I- LcrV68-326 + hIFN-γ (3.5±0.4)×10

-10
 

125
I- LcrV68-326 + h∆IFN-γ a ≥ 10-3

 
125

I- LcrV68-326 + hIFN-α2 ≥ 10-3
 

125
I- LcrV68-326 + mIFN-γ ≥ 10-3

 
125

I- LcrV68-326  + hIFN-γ + Anti- LcrV MAB 
b
 

≥ 10-3
 

a Human ∆IFN-γ lacking the first six C-terminal amino acids.  
b
 Mouse monoclonal antibody against peptide  LcrV193-210 containing binding site DEEI 

responsible for the interaction with h IFN-γ. 
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Table 5. Flow cytometric analysis of apoptosis induction in human thymocytes by combined 

insertion of LcrV and IFN-γ into the culture medium. 

Preparation, (µg/ml) Hypodiploid peak (%) Diploid peak (%) Proliferation (%) 

Control 
a
 5.2±0.6 79.2±1.1 13.7±0.9 

LcrV (1.0) 5.7±0.7 82.0±1.4 11.0±0.5 

LcrV (10.0) 8.2±0.5 85.8±0.9 6.7±0.3 

hIFN-γ (10.0) 6.0±0.8 88.0±1.7 3.9±0.4 

LcrV (1.0) + hIFN-γ (10.0) 45.7±1.3** 50.0±0.7 2.2±0.6 

LcrV (10.0) + hIFN-γ (10.0) 50.4±1.5** 45.4±0.6 2.5±0.2 

LcrV (10.0) + h∆IFN-γ (10,0) 5.3±0.4 85.5±1.2 6.3±0.8 

LcrV (10.0) + hIFN-γ (10.0) + 

Anti-LcrV MABs 
b
 

6.4±0.8 88.7±1.5 3.8±0.5 

Apoptosis was evaluated by the definition of the percentage of hypodiploid cells.  

** Differences are authentic (p<0.01) on comparative data according to Student. The media  ± 

SD of four independent experiments is shown;   
a
 Intact thymocytes;  

b 
Mouse monoclonal antibodies against peptide  LcrV31-50 containing binding site LEEL and 

peptide  LcrV193-210 containing binding site DEEI (these sites are responsible for the interaction 

with h IFN-γ). 

 

Table 6.  Flow cytometric analysis of apoptosis induction in human thymocytes by combined 

insertion of LcrV68-326 and IFN-γ into the culture medium. 

Preparation, (µg/ml) Hypodiploid 

peak (%) 

Diploid peak 

(%) 

Proliferation (%) 

Control 
a
 5.4±0.5 78.6±0.9 14.6±1.1 

LcrV68-326  (1.0) 5.9±0.6 78.4±1.2 12.5±0.8 

LcrV68-326  (10.0) 7.4±0.7 83.5±1.3 7.6±0.9 

hIFN-γ (10.0) 6.8±0.5 87.6±1.5 4.5±0.6 

LcrV68-326  (1.0) + hIFN-γ (10.0) 46.4±1.7** 49.2±0.8 2.8±0.3 

LcrV68-326  (10.0) + hIFN-γ (10.0) 52.8±1.5** 42.5±0.7 3.4±0.2 

LcrV68-326  (10.0) + h∆IFN-γ (10.0)                                                                                                                                             7.8±0.5 87.2±1.4 3.3±0.4 

LcrV68-326  (10.0) + hIFN-γ (10.0) + 

Anti- LcrV MAB 
b
 

6.5±0.7 86.1±1.1 4.3±0.5 

Apoptosis was evaluated by the definition of the percentage of hypodiploid cells.  

** Differences are authentic (p<0.01) on comparative data according to Student. The media ± SD 

of four independent experiments is shown;   
a
 Intact thymocytes;  

b 
Mouse monoclonal antibody against peptide  LcrV193-210 containing binding site DEEI  

responsible for the interaction with h IFN-γ. 
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