18 research outputs found

    Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires

    Full text link
    We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires

    Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review

    Get PDF
    Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not limited to pure metals and conventional metallic alloys, and a wide range of materials are currently processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanisms of geological and astronomical phenomena and the origin of life

    Controlled accessibility Lewis acid catalysed thermal reactions of regenerated cellulosic fibres

    No full text
    A combination of techniques have been used to characterise lyocell regenerated cellulose fibre subjected to low-moisture thermal-catalytic reactions with zinc chloride Lewis acid. Application from non-swelling ethanol reduces catalyst accessibility, but at high temperatures migration takes place through the internal fibre morphology. The extent of chain scission is reduced at lower temperatures, leading to a higher leveling-off degree of polymerisation (LODP). In contrast, application of zinc chloride from water results in a lower LODP, due to the more even distribution of catalyst. The weights of extractable polymer material increase according to two separate rate constants, following established semicrystalline models. A higher Arrhenius activation energy for chain scission is seen for zinc chloride application from ethanol, which may be due to the physical mobilisation of the cellulose polymer at high temperature, associated with a cellulose Tg. This may also aid recrystallisation. Cellulose dehydration endotherms and pyrolysis exotherms are shifted to lower temperature for application of zinc chloride from ethanol compared to water, which may be the result of a higher local concentration of catalyst and a faster reaction onset
    corecore