179 research outputs found

    Industrialization, electromagnetic fields, and breast cancer risk.

    Get PDF
    The disparity between the rates of breast cancer in industrialized and less-industrialized regions has led to many hypotheses, including the theory that exposure to light-at-night and/or electromagnetic fields (EMF) may suppress melatonin and that reduced melatonin may increase the risk of breast cancer. In this comprehensive review we consider strengths and weaknesses of more than 35 residential and occupational epidemiologic studies that investigated the association between EMF and breast cancer. Although most of the epidemiologic data do not provide strong support for an association between EMF and breast cancer, because of the limited statistical power as well as the possibility of misclassification and bias present in much of the existing data, it is not possible to rule out a relationship between EMF and breast cancer. We make several specific recommendations for future studies carefully designed to test the melatonin-breast cancer and EMF-breast cancer hypotheses. Future study designs should have sufficient statistical power to detect small to moderate associations; include comprehensive exposure assessments that estimate residential and occupational exposures, including shift work; focus on a relevant time period; control for known breast cancer risks; and pay careful attention to menopausal and estrogen receptor status

    Lippmann-Schwinger description of multiphoton ionization

    Full text link
    We outline a formalism and develop a computational procedure to treat the process of multiphoton ionization (MPI) of atomic targets in strong laser fields. We treat the MPI process nonperturbatively as a decay phenomenon by solving a coupled set of the integral Lippmann-Schwinger equations. As basic building blocks of the theory we use a complete set of field-free atomic states, discrete and continuous. This approach should enable us to provide both the total and differential cross-sections of MPI of atoms with one or two electrons. As an illustration, we apply the proposed procedure to a simple model of MPI from a square well potential and to the hydrogen atom.Comment: 25 pages, 3 figure

    A procedure to extract the complex amplitudes of He photodouble ionization from experimental data

    Get PDF
    A procedure to extract the two complex amplitudes that govern the He photodouble ionization process from the experimental data is proposed. The results are compared with the predictions of the convergent close coupling and hyperspherical R-matrix with semiclassical outgoing wave theories

    Two electron interference in angular resolved double photoionization of Mg

    Get PDF
    The signature of the target wavefunction has been observed in the symmetrized amplitude of the resonant double photoionization of Mg. This observation is based on our experimental study of angle-resolved double photoionization of Mg at the photon energy of 55.49 eV (2p → 3d resonance) under equal energy sharing conditions

    Interpreting Attoclock Measurements of Tunnelling Times

    Full text link
    Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical challenge. Here, we solve this problem by combining analytical theory with ab-initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. By calibrating the attoclock using the hydrogen atom, our method opens the way to identify possible delays associated with multielectron dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe

    Correlation effects during liquid infiltration into hydrophobic nanoporous mediums

    Full text link
    Correlation effects arising during liquid infiltration into hydrophobic porous medium are considered. On the basis of these effects a mechanism of energy absorption at filling porous medium by nonwetting liquid is suggested. In accordance with this mechanism, the absorption of mechanical energy is a result expenditure of energy for the formation of menisci in the pores on the shell of the infinite cluster and expenditure of energy for the formation of liquid-porous medium interface in the pores belonging to the infinite cluster of filled pores. It was found that in dependences on the porosity and, consequently, in dependences on the number of filled pores neighbors, the thermal effect of filling can be either positive or negative and the cycle of infiltration-defiltration can be closed with full outflow of liquid. It can occur under certain relation between percolation properties of porous medium and the energy characteristics of the liquid-porous medium interface and the liquid-gas interface. It is shown that a consecutive account of these correlation effects and percolation properties of the pores space during infiltration allow to describe all experimental data under discussion

    Ejection of quasi-free electron pairs from the helium atom ground state by single photon absorption

    Get PDF
    We investigate single photon double ionization (PDI) of helium at photon energies of 440 and 800 eV. We observe doubly charged ions with close to zero momentum corresponding to electrons emitted back-to-back with equal energy. These slow ions are the unique fingerprint of an elusive quasi-free PDI mechanism predicted by Amusia et al. nearly four decades years ago [J. Phys. B 8, 1248, (1975)] . It results from the non-dipole part of the electromagnetic interaction. Our experimental data are in excellent agreement with calculations performed using the convergent close coupling and time dependent close coupling methods
    • …
    corecore