14 research outputs found

    proGenomes3: approaching one million accurately and consistently annotated high-quality prokaryotic genomes

    Full text link
    The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/

    Towards the biogeography of prokaryotic genes

    Get PDF
    Funding was provided by the European Union’s Horizon 2020 Research and Innovation Programme (grant 686070: DD-DeCaF to P.B.) and Marie Skłodowska-Curie Actions (grant 713673 to A.R.d.R.), the European Research Council (ERC) MicrobioS (ERC-AdG-669830 to P.B.), JTC project jumpAR (01KI1706 to P.B.), a BMBF Grant (grant 031L0181A: LAMarCK to P.B.), the European Molecular Biology Laboratory (P.B.), the ETH and Helmut Horten Foundation (S.S.), the National Key R&D Program of China (grant 2020YFA0712403 to X.-M.Z.), (grant 61932008 to X.-M.Z.; grant 61772368 to X.-M.Z.; grant 31950410544 to L.P.C.), the Shanghai Municipal Science and Technology Major Project (grant 2018SHZDZX01 to X.-M.Z. and L.P.C.) and Zhangjiang Lab (X.-M.Z. and L.P.C.), the International Development Research Centre (grant 109304, EMBARK under the JPI AMR framework; to L.P.C.), la Caixa Foundation (grant 100010434, fellowship code LCF/BQ/DI18/11660009 to A.R.d.R.), the Severo Ochoa Program for Centres of Excellence in R&D from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017–2021) to C.P.C.), the Ministerio de Ciencia, Innovación y Universidades (grant PGC2018-098073-A-I00 MCIU/AEI/FEDER to J.H.-C. and J.G.-L.), the Innovation Fund Denmark (grant 4203-00005B, PNM), the Biotechnology and Biological Sciences research Council (BBSrC) Gut MicroInstitute Strategic Programmebes and Health BB/r012490/1 and its constituent project BBS/e/F/000Pr10355 (F.H.). R.A. is a member of the Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences.Peer reviewe

    Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    No full text
    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences

    STRUCTURAL PROPERTIES OF CoFe2-xCexO4 (x =0.00 AND 0.02) NANOPARTICLES USING XRD AND FTIR ANALYSIS

    No full text
    In this communication, we report the synthesis of Ce doped cobalt ferrite having the formula CoFe2-xCexO4 (x =0.00 and 0.02) using sol-gel autocombustion method and investigations of various properties to understand the role of Ce on the structural, morphological, electrical, optical and magnetic properties of cobalt ferrite. X-ray diffraction technique confirms the formation of single phase cubic spinel structure associated with the prepared samples. Various structural parameters were obtained and their co-relation with Ce was examined. The crystallite size obtained from Debye Scherrer formula suggests that the prepared samples are nanocrystalline in nature. The infrared spectra of CoCexFe2-x04 (x =0.00 and 0.02) in the frequency range of 400 to 4000 cm-1 . The IR has detected that the intrinsic and extrinsic vibrations of CoFe2- xCexO4 nanoparticles; v2 = 390 - 406 cm–1 and v1 = 548 - 554 cm–

    Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12

    No full text
    ABSTRACT Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT, which are adjacent to and coded divergently to racR. IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli, we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent

    Repression of YdaS Toxin is Mediated by Transcriptional Repressor RacR in the cryptic rac prophage of Escherichia coli-K12

    No full text
    Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent. </jats:p

    Draft Genome Sequence of Staphylococcus aureus ST672, an Emerging Disease Clone from India

    No full text
    We report the draft genome sequence of methicillin-resistant Staphylococcus aureus (MRSA) strain ST672, an emerging disease clone in India, from a septicemia patient. The genome size is about 2.82 Mb with 2,485 open reading frames (ORFs). The staphylococcal cassette chromosome mec (SCCmec) element (type V) and immune evasion cluster appear to be different from those of strain ST772 on preliminary examination

    Draft Genome Sequence of Staphylococcus aureus 118 (ST772), a Major Disease Clone from India

    No full text
    We report the draft genome sequence of an ST772 Staphylococcus aureus disease isolate carrying staphylococcal cassette chromosome mec (SCCmec) type V from a pyomyositis patient. Our de novo short read assembly is similar to 2.8 Mb and encodes a unique Panton-Valentine leukocidin (PVL) phage with structural genes similar to those of phi 7247PVL and novel lysogenic genes at the N termini

    GUNC: detection of chimerism and contamination in prokaryotic genomes

    No full text
    Abstract Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic genome assemblies remains a formidable challenge. We present GUNC (the Genome UNClutterer), a tool that accurately detects and quantifies genome chimerism based on the lineage homogeneity of individual contigs using a genome’s full complement of genes. GUNC complements existing approaches by targeting previously underdetected types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 5.2% in RefSeq, and 15–30% of pre-filtered “high-quality” metagenome-assembled genomes in recent studies are undetected chimeras. GUNC provides a fast and robust tool to substantially improve prokaryotic genome quality

    Genome Sequencing Unveils a Novel <i>Sea</i> Enterotoxin-Carrying PVL Phage in <i>Staphylococcus aureus</i> ST772 from India

    Get PDF
    <div><p><i>Staphylococcus aureus</i> is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated <i>S. aureus</i> (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the <i>hlb</i>-carrying prophage and includes the <i>sea</i> enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The <i>sea</i> gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the <i>hlb</i>-converting prophage in ST772 suggests that widespread mobility of the <i>sea</i> enterotoxin might be a selective force behind its ‘transfer’ to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside the genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.</p> </div
    corecore