1,107 research outputs found

    Stochastic Ion Heating by the Lower-Hybrid Waves

    Get PDF
    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator

    Photoelectrons in the quiet polar wind

    Full text link
    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM‐STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day‐night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.Key PointsStudy presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solutionSingle stationary field line solutions under sunlit and dark conditions are presented as is the global solution from ∼1000 moving linesField line motion creates global structure by transporting field lines through different conditions of illumination and Joule heatingPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/1/jgra53574.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/2/jgra53574_am.pd

    Broadband Faraday Isolator

    Full text link
    Driving on an analogy with the technique of composite pulses in quantum physics, we propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.Comment: submitted to JOSA A, comments are welcom

    Source of the Bursty Bulk Flow Diffuse Aurora: Electrostatic Cyclotron Harmonic and Whistler Waves in the Coupling of Bursty Bulk Flows to Auroral Precipitation

    Get PDF
    Electron cyclotron harmonic (ECH) and whistler chorus waves are recognized as the two mechanisms responsible for the resonant waveparticle interactions necessary to precipitate plasma sheet electrons into the ionosphere, producing the diffuse Aurora. Previous work has demonstrated ECH waves dominate electron scattering at L shells >8, while whistler chorus dominates scattering at L shells L 1, consistent with electron betatron acceleration. Here, however, we nd whistler chorus emissions throughout an interval of fast ows where Te,/Te,||< 1. Parallel electron beams account for the enhanced parallel electron temperature and serve as the instability mechanism for the whistler chorus. The parallel electron beams and associated cigarshaped distributions are consistent with Fermi acceleration at dipolarizations in fast ows. We demonstrate that the scattering efciency of the whistler chorus exceeds that of ECH waves, which THEMIS also detects during the fast ows. The obliquity of the whistler waves permits efcient scattering of lowerenergy electrons into the diffuse aurora. We conclude that Fermi acceleration of electrons provides one important freeenergy source for the waveparticle interactions responsible for coupling plasma sheet electrons into the diffuse aurora during substorm conditions

    Chaotic Motion of Relativistic Electrons Driven by Whistler Waves

    Get PDF
    Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere

    Stochastic electron motion driven by space plasma waves

    Get PDF
    Stochastic motion of relativistic electrons under conditions of the nonlinear resonance interaction of particles with space plasma waves is studied. Particular attention is given to the problem of the stability and variability of the Earth's radiation belts. It is found that the interaction between whistler-mode waves and radiation-belt electrons is likely to involve the same mechanism that is responsible for the dynamical balance between the accelerating process and relativistic electron precipitation events. We have also considered the efficiency of the mechanism of stochastic surfing acceleration of cosmic electrons at the supernova remnant shock front, and the accelerating process driven by a Langmuir wave packet in producing cosmic ray electrons. The dynamics of cosmic electrons is formulated in terms of a dissipative map involving the effect of synchrotron emission. We present analytical and numerical methods for studying Hamiltonian chaos and dissipative strange attractors, and for determining the heating extent and energy spectra

    Dynamical behavior of U-shaped double layers: cavity formation and filamentary structures

    Get PDF
    International audienceObservations from the Polar and FAST satellites have revealed a host of intriguing features of the auroral accelerations processes in the upward current region (UCR). These features include: (i) large-amplitude parallel and perpendicular fluctuating as well as quasi-static electric fields in density cavities, (ii) fairly large-amplitude unipolar parallel electric fields like in a strong double layer (DL), (iii) variety of wave modes, (iv) counter-streaming of upward going ion beams and downward accelerated electrons, (v) horizontally corrugated bottom region of the potential structures (PS), in which electron and ion accelerations occur, (vi) filamentary ion beams in the corrugated PS, and (vii) both upward and downward moving narrow regions of parallel electric fields, inferred from the frequency drifts of the auroral kilometric radiations. Numerical simulations of U-shaped potential structures reveal that such observed features of the UCR are integral parts of dynamically evolving auroral U-shaped potential structures. Using a 2.5-D particle-in-cell (PIC) code we simulate a U-shaped broad potentialstructure (USBPS). The dynamical behavior revealed by the simulation includes: (i) recurring redistribution of the parallel potential drop (PPD) in the PS, (ii) its up and downward motion, (iii) formation of filaments in the potential and density structures, and (iv) creation of filamentary as well as broad extended density cavities. The formation of the filamentary structures is initiated by an ion-beam driven instability of an oblique ion mode trapped inside a broad cavity, when it becomes sufficiently thin in height. The filaments of the PS create filamentary electron beams, which generate waves at frequencies above the lower hybrid frequency, affecting plasma heating. This results in plasma evacuation and formation of a cavity extended in height. The waves associated with filamentary electron beams also evolve into electron holes. The transverse and parallel scale lengths of the regions with large EE_{\vert \vert} and EbotE_{bot} as well as their magnitudes are compared with satellite data

    Single Cycle Thin Film Compressor Opening the door to Zeptosecond-Exawatt Physics

    Full text link
    This article demonstrates a new compression scheme that has the potential to compress a high energy pulse as high as a few hundred Joules in a pulse as short as one optical cycle at 0.8{\mu}m making a true ultra-relativistic {\lambda}^3 pulse. This pulse could have a focused intensity of 10^24W/cm2 or a0 of 1000. It could form an efficient, 10%, relativistic mirror that could compress the pulse to the atto-zeptosecond regime, with an upshifted wavelength of 1-10keV. This technique could be a watershed making the entry of petawatt pulses into the exawatt and zeptosecond regime possible.Comment: 6 pages, 6 figure

    Dynamic Theory of Relativistic Electrons Stochastic Heating by Whistler Mode Waves with Application to the Earth Magnetosphere

    Get PDF
    In the Hamiltonian approach an electron motion in a coherent packet of the whistler mode waves propagating along the direction of an ambient magnetic field is studied. The physical processes by which these particles are accelerated to high energy are established. Equations governing a particle motion were transformed in to a closed pair of nonlinear difference equations. The solutions of these equations have shown there exists the energetic threshold below that the electron motion is regular, and when the initial energy is above the threshold an electron moves stochastically. Particle energy spectra and pitch angle electron scattering are described by the Fokker-Planck-Kolmogorov equations. Calculating the stochastic diffusion of electrons due to a spectrum of whistler modes is presented. The parametric dependence of the diffusion coefficients on the plasma particle density, magnitude of wave field, and the strength of magnetic field is studies. It is shown that significant pitch angle diffusion occurs for the Earth radiation belt electrons with energies from a few keV up to a few MeV
    corecore