Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms and Recent Flare Activity

David A. Falconer (UAHuntsville/MSFC), Ronald L. Moore(MSFC), Abdulnasser F. Barghouty(MSFC), and Igor Khazanov(UAHuntsville)

Our Main Finding:

New empirical evidence shows that, in addition to depending strongly on the free magnetic energy, an active region's chance of having a major eruption depends strongly on other aspects of the evolving magnetic field (e.g., its complexity and flux emergence).

Overview

- Describe the free-energy proxy
- Show the free-energy forecast curves for major flares and fast CMEs
- Show forecast curves for active regions that have recently produced X and M class flares

MSFC Vector Magnetogram of δ-Sunspot Source Region of a Major CME/Flare Eruption (2000 June 6)

An active-region field's horizontal shear is concentrated along neutral lines where the field's horizontal component is strong and the vertical component's horizontal gradient is steep.

Observed-field upward (downward) vert. comp. is shown by solid contours or light shading (dashed contours or dark shading); red arrows show observed hor. comp. ; green arrows show hor. comp. of pot. field computed from obs. vert. comp. ; strong-observed-field (>150G) intervals of neutral lines are blue.

Free-energy proxy from vertical-field component of vector magnetogram or from line-of-sight magnetogram:

- Active-region field's free energy is concentrated in horizontal shear along neutral-lines intervals on which the horizontal component is strong and the vertical component's horizontal gradient is steep.
- Deprojected vector magnetogram version

$$
\mathbf{W L}_{\mathrm{sG}}=\int\left(\nabla \mathbf{B}_{\mathrm{Z}}\right) \mathrm{dl}
$$

or line-of-sight approximation

$$
{ }^{L_{W L}^{S G}}=\int\left(\nabla \mathbf{B}_{\mathrm{LOS}}\right) \mathrm{dl} .
$$

integration is along strong-field intervals of the AR neutral lines.

Forecast Curves (Ignoring Prior Flaring)

Only active regions that have a large free energy are likely to produce major events in the next 24 hours.

Prior Flaring is Partly Separate from Free Energy as a Predictor of an Active Region CME/Flare Productivity

Free Energy Only
Recently Flaring
Recently Non-flaring

Forecast of March 7 X-Flare/SEP Eruption

- Top panel: Free Energy proxy level and evolution.
- Lower Panel: Forecast M\&X flare
 rate
- Forecast using free-energy proxy only
- Forecast using Free-energy proxy and previous Flare History
- Symbols
$\begin{array}{ll}+ & \text { M-class Flares } \\ * & \text { X-class Flare \& SEP }\end{array}$

In Addition to Free-Energy, Something else that Persists on Periods of Days must be an Important Factor

- Free-energy level of an active region persists over a timescale of days!
- This persistence might have explained why previous flare activity is a good predictor of
 future flare activity.
- But, after accounting for the free-energy proxy, prior flaring still has, additional predictive ability.
- This shows that some other persistent factors must also play a role in causing eruptions.

Next Step: Find the additional Factors

- Study active regions that have similar values of the free-energy proxy.
- Indentify which active regions are more flare productive and which active regions are less productive.
- Determined what factors differ between the two subsets
- (not total magnetic flux/active region size)
- Evolution
- Complexity

Backup Slides

Flux Content is Not an Important Additional Determinant

Gray scale plot shows free energy/magnetic size distribution of 40,000 magnetograms of 1,300 active regions. Red contours are $0.001,0.01$, and 0.1 , and 0.5 event/day levels.

SRAG MAG4 Forecast Tool

Example Display (March 6, 2012)

- Active region in upper-left corner produced the March 7 Solar Energetic particle event and geo-effective CME

Backup SRAG MAG4 Tool Forecast Before X5 Flare

2012/03/06 22:23

