80 research outputs found

    Antagonistic Activity of Trichoderma ISolates against Sclerotium rolfsii : Screening of Efficient Isolates from Morocco Soils for Biological Control

    Get PDF
    Seventy Trichoderma spp. isolates collected from different regions of Morocco were tested for their capacity to inhibit in vitro mycelial growth of Sclerotium rolfsii, and for their effect on the viability of S. rolfsii sclerotia in the soil. The Trichoderma spp. isolates inhibited mycelial growth of S. rolfsii to various degrees, with 52% of isolates expressing an average inhibition, varying between 45 and 55%. The effect on the viability of sclerotia in the soil also varied between isolates of Trichoderma, with the majority (84%) having a slight effect. A group of twenty isolates identified as Trichoderma harzianum when tested in sterilized soil, significantly reduced sclerotial viability though not in natural soil. Four of these isolates (Nz, Kb2, Kb3 and Kf1) showed good antagonistic activity against S. rolfsii and were also highly competitive in natural soil. These isolates would therefore be candidates for development in biological control program

    Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    Get PDF
    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1−/−C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1−/−C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1+ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1+ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy

    Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16

    Get PDF
    Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg[superscript 2+], Ca[superscript 2+], and Mn[superscript 2+] were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.Malaysia-MIT Biotechnology Partnership Programm

    Intrauterine Growth Retarded Progeny of Pregnant Sows Fed High Protein:Low Carbohydrate Diet Is Related to Metabolic Energy Deficit

    Get PDF
    High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR). To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW) at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP), adequate (12.1%, AP), and high (30%, HP) protein levels, made isoenergetic by adjusted carbohydrate content. At −5, 24, 66, and 108 days post coitum (dpc) fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC), %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA) concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein∶low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein∶high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal

    Properties, production, and applications of camelid single-domain antibody fragments

    Get PDF
    Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Quercetin Loaded Silica and Gold - Coated Silica Nanoparticles: Characterization, Evaluation and Comparison of Their in vitro Characteristics

    No full text
    Herein, silica nanoparticles (NPs) and gold-silica NPs were loaded with the anti-cancer agent quercetin (QC) to produce silica NPs-QC and gold coated silica NPs-QC, respectively. The nanosystems were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR). Drug encapsulation efficiency (EE), loading capacity (LC) and release rate were measured using UV spectrophotometer. The drug was encapsulated in silica NPs in a high percentage (71%) and reduced by about 16% after gold coating. The mean particle size increased after coating and QC loading with a polydispersity index (PDI) between (∼ 0.2 - 0.6) and negative zeta potential (-13 to - 15 mV). The intensity of FTIR peaks of silica NPs has been significantly decreased upon gold coating indicating a successful attachment of the gold thin layer. The drug release was slightly faster from coated compared to uncoated NPs but both slower than free QC. The percentages of their cell toxicity were almost the same but lower than free QC and generally were higher against HeLa cells compared to fibroblast cells. Both nanosystems could be considered as promising nanocarriers with reasonable EE, slower release rate and lower toxicity compared to the free drug
    corecore