13 research outputs found

    Measuring angular coordinates in Unmanned Aerial Vehicles (UAVs) positioning systems and developing a new phase-metric method for goniometric control of UAVs

    Get PDF
    For the safe operation of Unmanned Aerial Vehicles (UAVs), an effective Automatic Control System (ACS) is necessary, which for successful operation requires high accuracy of the initial information about the UAV’s position in space. Based on the analysis of the shortcomings of the known orientation systems, a phase-metric method of goniometric (angular) control based on accelerometric and gyroscopic transducers for positioning the UAV is proposed, which has a higher accuracy and a wider range of measurement angles. The conducted study showed that in a wide range of rotation angles from 10 to 90 degrees, the root mean square error (RMS) of the results of calculating the rotation angle using the phase-metric method is 8,78 times less than the RMS of the results of calculating the rotation angle using the arctangent function. Reducing the error determines the effectiveness of the proposed method in UAV control systems

    Thermal properties and structure of cast carbon-containing invar and superinvar alloys after two-stage annealing

    Full text link
    The effect of carbon content on thermal properties of cast superinvar alloys subjected to two-stage annealing is studied. It is shown that carbon improves the casting properties of the alloys but raises the temperature coefficient of linear expansion (CTLE). Two-stage high-temperature annealing makes it possible to remove carbon from the solid solution and to transfer it into graphite, which is accompanied by decrease in the CTLE. © 2013 Springer Science+Business Media New York

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Silicon detectors for the sLHC

    No full text
    In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the RandD programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages. © 2011 Elsevier B.V

    Silicon detectors for the sLHC

    No full text
    In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages. (C) 2011 Elsevier B.V. All rights reserved
    corecore