17 research outputs found
Multinational prospective cohort study of rates and risk factors for ventilator-associated pneumonia over 24 years in 42 countries of Asia, Africa, Eastern Europe, Latin America, and the Middle East: Findings of the International Nosocomial Infection Control Consortium (INICC)
Objective: Rates of ventilator-associated pneumonia (VAP) in low- and middle-income countries (LMIC) are several times above those of high-income countries. The objective of this study was to identify risk factors (RFs) for VAP cases in ICUs of LMICs. Design: Prospective cohort study. Setting: This study was conducted across 743 ICUs of 282 hospitals in 144 cities in 42 Asian, African, European, Latin American, and Middle Eastern countries. Participants: The study included patients admitted to ICUs across 24 years. Results: In total, 289,643 patients were followed during 1,951,405 patient days and acquired 8,236 VAPs. We analyzed 10 independent variables. Multiple logistic regression identified the following independent VAP RFs: male sex (adjusted odds ratio [aOR], 1.22; 95% confidence interval [CI], 1.16-1.28; P <.0001); longer length of stay (LOS), which increased the risk 7% per day (aOR, 1.07; 95% CI, 1.07-1.08; P <.0001); mechanical ventilation (MV) utilization ratio (aOR, 1.27; 95% CI, 1.23-1.31; P <.0001); continuous positive airway pressure (CPAP), which was associated with the highest risk (aOR, 13.38; 95% CI, 11.57-15.48; P <.0001)Revisión por pare
An international prospective study of INICC analyzing the incidence and risk factors for catheter-associated urinary tract infections in 235 ICUs across 8 Asian Countries
Background: Identify urinary catheter (UC)-associated urinary tract infections (CAUTI) incidence and risk factors (RF) in 235 ICUs in 8 Asian countries: India, Malaysia, Mongolia, Nepal, Pakistan, the Philippines, Thailand, and Vietnam. Methods: From January 1, 2014, to February 12, 2022, we conducted a prospective cohort study. To estimate CAUTI incidence, the number of UC days was the denominator, and CAUTI was the numerator. To estimate CAUTI RFs, we analyzed 11 variables using multiple logistic regression. Results: 84,920 patients hospitalized for 499,272 patient days acquired 869 CAUTIs. The pooled CAUTI rate per 1,000 UC-days was 3.08; for those using suprapubic-catheters (4.11); indwelling-catheters (2.65); trauma-ICU (10.55), neurologic-ICU (7.17), neurosurgical-ICU (5.28); in lower- middle-income countries (3.05); in upper-middle-income countries (1.71); at public-hospitals (5.98), at private-hospitals (3.09), at teaching-hospitals (2.04). The following variables were identified as CAUTI RFs: Age (adjusted odds ratio [aOR] = 1.01; 95% CI = 1.01-1.02; P < .0001); female sex (aOR = 1.39; 95% CI = 1.21-1.59; P < .0001); using suprapubic-catheter (aOR = 4.72; 95% CI = 1.69-13.21; P < .0001); length of stay before CAUTI acquisition (aOR = 1.04; 95% CI = 1.04-1.05; P < .0001); UC and device utilization-ratio (aOR = 1.07; 95% CI = 1.01-1.13; P = .02); hospitalized at trauma-ICU (aOR = 14.12; 95% CI = 4.68-42.67; P < .0001), neurologic-ICU (aOR = 14.13; 95% CI = 6.63-30.11; P < .0001), neurosurgical-ICU (aOR = 13.79; 95% CI = 6.88-27.64; P < .0001); public-facilities (aOR = 3.23; 95% CI = 2.34-4.46; P < .0001). Discussion: CAUTI rate and risk are higher for older patients, women, hospitalized at trauma-ICU, neurologic-ICU, neurosurgical-ICU, and public facilities. All of them are unlikely to change. Conclusions: It is suggested to focus on reducing the length of stay and the Urinary catheter device utilization ratio, avoiding suprapubic catheters, and implementing evidence-based CAUTI prevention recommendations
Recommended from our members
Six-year multicenter study on short-term peripheral venous catheters-related bloodstream infection rates in 204 intensive care units of 57 hospitals in 19 cities of India: International Nosocomial Infection Control Consortium (INICC) findings
•We report peripheral venous catheters (PVC)-related BSI rates from 2013 to 2019.•We collected prospective data from 204 ICUs in 57 hospitals in 19 cities of India.•We followed 7,513 ICU patients for 296,893 bed-days and 295,795 PVC-days.•We identified 863 PVC-related BSIs, amounting to a rate of 2.91/1,000 PVC-days.
Short-term peripheral venous catheters-related bloodstream infections (PVCR-BSIs) rates have not been systematically studied in developing countries, and data on their incidence by number of device-days are not available.
Prospective, surveillance study on PVCR-BSI conducted from September 1, 2013 to May 31, 2019 in 204 intensive care units (ICUs), members of the International Nosocomial Infection Control Consortium (INICC), from 57 hospitals in 19 cities of India. We applied US INICC definition criteria and reported methods using the INICC Surveillance Online System.
We followed 7,513 ICU patients for 296,893 bed-days and 295,795 short term peripheral venous catheter (PVC)-days. We identified 863 PVCR-BSIs, amounting to a rate of 2.91/1,000 PVC-days.
Mortality in patients with PVC but without PVCR-BSI was 4.14%, and 11.59% in patients with PVCR-BSI. The length of stay in patients with PVC but without PVCR-BSI was 4.13 days, and 5.9 days in patients with PVCR-BSI. The micro-organism profile showed 68% of gram negative bacteria: Escherichia coli (23%), Klebsiella spp (15%), Pseudomonas aeruginosa (5%), and others. The predominant gram-positive bacteria were Staphylococcus aureus (10%).
PVCR-BSI rates found in our ICUs were much higher than rates published from industrialized countries. Infection prevention programs must be implemented to reduce the incidence of PVCR-BSIs
Examining the impact of a 9-component bundle and the INICC multidimensional approach on catheter-associated urinary tract infection rates in 32 countries across Asia, Eastern Europe, Latin America, and the Middle East
Background: Catheter-Associated Urinary Tract Infections (CAUTIs) frequently occur in the intensive care unit (ICU) and are correlated with a significant burden. Methods: We implemented a strategy involving a 9-element bundle, education, surveillance of CAUTI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CAUTI rates and performance feedback. This was executed in 299 ICUs across 32 low- and middle-income countries. The dependent variable was CAUTI per 1,000 UC days, assessed at baseline and throughout the intervention, in the second month, third month, 4 to 15 months, 16 to 27 months, and 28 to 39 months. Comparisons were made using a 2-sample t test, and the exposure-outcome relationship was explored using a generalized linear mixed model with a Poisson distribution. Results: Over the course of 978,364 patient days, 150,258 patients utilized 652,053 UC-days. The rates of CAUTI per 1,000 UC days were measured. The rates decreased from 14.89 during the baseline period to 5.51 in the second month (risk ratio [RR] = 0.37; 95% confidence interval [CI] = 0.34-0.39; P < .001), 3.79 in the third month (RR = 0.25; 95% CI = 0.23-0.28; P < .001), 2.98 in the 4 to 15 months (RR = 0.21; 95% CI = 0.18-0.22; P < .001), 1.86 in the 16 to 27 months (RR = 0.12; 95% CI = 0.11-0.14; P < .001), and 1.71 in the 28 to 39 months (RR = 0.11; 95% CI = 0.09-0.13; P < .001). Conclusions: Our intervention, without substantial costs or additional staffing, achieved an 89% reduction in CAUTI incidence in ICUs across 32 countries, demonstrating feasibility in ICUs of low- and middle-income countries.Revisión por pare
Decreasing central line-associated bloodstream infections rates in intensive care units in 30 low- and middle-income countries: An INICC approach
Background: Central line (CL)-associated bloodstream infections (CLABSIs) occurring in the intensive care unit (ICU) are common and associated with a high burden. Methods: We implemented a multidimensional approach, incorporating an 11-element bundle, education, surveillance of CLABSI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CLABSI rates and clinical outcomes, and performance feedback in 316 ICUs across 30 low- and middle-income countries. Our dependent variables were CLABSI per 1,000-CL-days and in-ICU all-cause mortality rates. These variables were measured at baseline and during the intervention, specifically during the second month, third month, 4 to 16 months, and 17 to 29 months. Comparisons were conducted using a two-sample t test. To explore the exposure-outcome relationship, we used a generalized linear mixed model with a Poisson distribution to model the number of CLABSIs. Results: During 1,837,750 patient-days, 283,087 patients, used 1,218,882 CL-days. CLABSI per 1,000 CL-days rates decreased from 15.34 at the baseline period to 7.97 in the 2nd month (relative risk (RR) = 0.52; 95% confidence interval [CI] = 0.48-0.56; P .001), 5.34 in the 3rd month (RR = 0.35; 95% CI = 0.32-0.38; P .001), and 2.23 in the 17 to 29 months (RR = 0.15; 95% CI = 0.13-0.17; P .001). In-ICU all-cause mortality rate decreased from 16.17% at baseline to 13.68% (RR = 0.84; P = .0013) at 17 to 29 months. Conclusions: The implemented approach was effective, and a similar intervention could be applied in other ICUs of low- and middle-income countries to reduce CLABSI and in-ICU all-cause mortality rates. © 2023 Association for Professionals in Infection Control and Epidemiology, Inc
Decreasing central line-associated bloodstream infections rates in intensive care units in 30 low- and middle-income countries: An INICC approach
Background: Central line (CL)-associated bloodstream infections (CLABSIs) occurring in the intensive care unit (ICU) are common and associated with a high burden. Methods: We implemented a multidimensional approach, incorporating an 11-element bundle, education, surveillance of CLABSI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CLABSI rates and clinical outcomes, and performance feedback in 316 ICUs across 30 low- and middle-income countries. Our dependent variables were CLABSI per 1,000-CL-days and in-ICU all-cause mortality rates. These variables were measured at baseline and during the intervention, specifically during the second month, third month, 4 to 16 months, and 17 to 29 months. Comparisons were conducted using a two-sample t test. To explore the exposure-outcome relationship, we used a generalized linear mixed model with a Poisson distribution to model the number of CLABSIs. Results: During 1,837,750 patient-days, 283,087 patients, used 1,218,882 CL-days. CLABSI per 1,000 CL-days rates decreased from 15.34 at the baseline period to 7.97 in the 2nd month (relative risk (RR) = 0.52; 95% confidence interval [CI] = 0.48-0.56; P < .001), 5.34 in the 3rd month (RR = 0.35; 95% CI = 0.32-0.38; P < .001), and 2.23 in the 17 to 29 months (RR = 0.15; 95% CI = 0.13-0.17; P < .001). In-ICU all-cause mortality rate decreased from 16.17% at baseline to 13.68% (RR = 0.84; P = .0013) at 17 to 29 months. Conclusions: The implemented approach was effective, and a similar intervention could be applied in other ICUs of low- and middle-income countries to reduce CLABSI and in-ICU all-cause mortality rates.Revisión por pare
International Nosocomial Infection Control Consortium (INICC) report of health care associated infections, data summary of 45 countries for 2015 to 2020, adult and pediatric units, device-associated module
Background: Reporting on the International Nosocomial Infection Control Consortium study results from 2015 to 2020, conducted in 630 intensive care units across 123 cities in 45 countries spanning Africa, Asia, Eastern Europe, Latin America, and the Middle East. Methods: Prospective intensive care unit patient data collected via International Nosocomial Infection Control Consortium Surveillance Online System. Centers for Disease Control and Prevention/National Health Care Safety Network definitions applied for device-associated health care–associated infections (DA-HAI). Results: We gathered data from 204,770 patients, 1,480,620 patient days, 936,976 central line (CL)-days, 637,850 mechanical ventilators (MV)-days, and 1,005,589 urinary catheter (UC)-days. Our results showed 4,270 CL-associated bloodstream infections, 7,635 ventilator-associated pneumonia, and 3,005 UC-associated urinary tract infections. The combined rates of DA-HAIs were 7.28%, and 10.07 DA-HAIs per 1,000 patient days. CL-associated bloodstream infections occurred at 4.55 per 1,000 CL-days, ventilator-associated pneumonias at 11.96 per 1,000 MV-days, and UC-associated urinary tract infections at 2.91 per 1,000 UC days. In terms of resistance, Pseudomonas aeruginosa showed 50.73% resistance to imipenem, 44.99% to ceftazidime, 37.95% to ciprofloxacin, and 34.05% to amikacin. Meanwhile, Klebsiella spp had resistance rates of 48.29% to imipenem, 72.03% to ceftazidime, 61.78% to ciprofloxacin, and 40.32% to amikacin. Coagulase-negative Staphylococci and Staphylococcus aureus displayed oxacillin resistance in 81.33% and 53.83% of cases, respectively. Conclusions: The high rates of DA-HAI and bacterial resistance emphasize the ongoing need for continued efforts to control them. © 2024 Association for Professionals in Infection Control and Epidemiology, Inc