50 research outputs found

    Cytokine and Protein Markers of Leprosy Reactions in Skin and Nerves: Baseline Results for the North Indian INFIR Cohort

    Get PDF
    Leprosy affects skin and peripheral nerves. Although we have effective antibiotics to treat the mycobacterial infection, a key part of the disease process is the accompanying inflammation. This can worsen after starting antibacterial treatment with episodes of immune mediated inflammation, so called ‘reactions’. These reactions are associated with worsening of the nerve damage. We recruited a cohort of 303 newly diagnosed leprosy patients in North India with the aim of understanding and defining the pathological processes better. We took skin and nerve biopsies from patients and examined them to define which molecules and mediators of inflammation were present. We found high levels of the cytokines Tumour Necrosis Factor alpha, Transforming Growth Factor beta and inducible Nitric Oxide Synthase in biopsies from patients with reactions. We also found high levels of bacteria and inflammation in the nerves. These experiments tell us that we need to determine which other molecules are present and to explore ways of switching off the production of these pro-inflammatory molecules

    Identification of HLA-DRPheβ47 as the susceptibility marker of hypersensitivity to beryllium in individuals lacking the berylliosis-associated supratypic marker HLA-DPGluβ69

    Get PDF
    BACKGROUND: Susceptibility to beryllium (Be)-hypersensitivity (BH) has been associated with HLA-DP alleles carrying a glutamate at position 69 of the HLA-DP β-chain (HLA-DPGlu69) and with several HLA-DP, -DQ and -DR alleles and polymorphisms. However, no genetic associations have been found between BH affected subjects not carrying the HLA-DPGlu69 susceptibility marker. METHODS: In this report, we re-evaluated an already described patient populations after 7 years of follow-up including new 29 identified BH subjects. An overall population 36 berylliosis patients and 38 Be-sensitization without lung granulomas and 86 Be-exposed controls was analysed to assess the role of the individual HLA-class II polymorphisms associated with BH-susceptibility in HLA-DPGlu69 negative subjects by univariate and multivariate analysis. RESULTS: As previously observed in this population the HLA-DPGlu69 markers was present in higher frequency in berylliosis patients (31 out of 36, 86%) than in Be-sensitized (21 out of 38, 55%, p = 0.008 vs berylliosis) and 41 out of 86 (48%, p < 0.0001 vs berylliosis, p = 0.55 vs Be-sensitized) Be-exposed controls. However, 22 subjects presenting BH did not carry the HLA-DPGlu69 marker. We thus evaluated the contribution of all the HLA-DR, -DP and -DQ polymorphisms in determining BH susceptibility in this subgroup of HLA-Glu69 subjects. In HLA-DPGlu69-negatives a significant association with BH was found for the HLA-DQLeu26, for the HLA-DRB1 locus residues Ser13, Tyr26, His32, Asn37, Phe47 and Arg74 and for the HLA-DRB3 locus clusterized residues Arg11, Tyr26, Asp28, Leu38, Ser60 and Arg74. HLA-DRPhe47 (OR 2.956, p < 0.05) resulting independently associated with BH. Further, Be-stimulated T-cell proliferation in the HLA-DPGlu69-negative subjects (all carrying HLA-DRPhe47) was inhibited by the anti-HLA-DR antibody (range 70–92% inhibition) significantly more than by the anti-HLA-DP antibody (range: 6–29%; p < 0.02 compared to anti-HLA-DR) while it was not affected by the anti-HLA-DQ antibody. CONCLUSION: We conclude that HLA-DPGlu69 is the primary marker of Be-hypersensitivity and HLA-DRPhe47 is associated with BH in Glu69-negative subjects, likely playing a role in Be-presentation and sensitization

    Granulomatous Reactivation during the Course of a Leprosy Infection: Reaction or Relapse

    Get PDF
    Leprosy is a serious infectious disease whose treatment still poses some challenges. Patients are usually treated with a combination of antimicrobial drugs called multidrug therapy. Although this treatment is effective against Mycobacterium leprae, the bacillus that causes leprosy, patients may develop severe inflammatory reactions during treatment. These reactions may be either attributed to an improvement in the immunological reactivity of the patient along with the treatment, or to relapse of the disease due to the proliferation of remaining bacilli. In certain patients these two conditions may be difficult to differentiate. The present study addresses the histopathology picture of and the M. leprae bacilli in sequential biopsies taken from lesions of patients who presented such reactions aiming to improve the differentiation of the two conditions. This is important because these reactions are one of the major causes of the disabilities of the patients with leprosy, and should be treated early and appropriately. Our results show that the histopathology picture alone is not sufficient, and that bacilli's counting is necessary

    Analysis of Antibody and Cytokine Markers for Leprosy Nerve Damage and Reactions in the INFIR Cohort in India

    Get PDF
    Leprosy is one of the oldest known diseases. In spite of the established fact that it is least infectious and a completely curable disease, the social stigma associated with it still lingers in many countries and remains a major obstacle to self reporting and early treatment. The nerve damage that occurs in leprosy is the most serious aspect of this disease as nerve damage leads to progressive impairment and disability. It is important to identify markers of nerve damage so that preventive measures can be taken. This prospective cohort study was designed to look at the potential association of some serological markers with reactions and nerve function impairment. Three hundred and three newly diagnosed patients from north India were recruited for this study. The study attempts to reflect a model of nerve damage initiated by mycobacterial antigens and maintained by ongoing inflammation through cytokines such as Tumour Necrosis Factor alpha and perhaps extended by antibodies against nerve components

    Clinical oxidative stress during leprosy multidrug therapy:impact of dapsone oxidation

    Get PDF
    This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 μg/mL) and paucibacillary (0.662±0.123 μg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDTsupervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software

    TGF-β-Mediated Sustained ERK1/2 Activity Promotes the Inhibition of Intracellular Growth of Mycobacterium avium in Epithelioid Cells Surrogates

    Get PDF
    Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth

    Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin-12, and inducible nitric oxide synthase expression in leprosy type 1 (reversal) reactions before and during prednisolone treatment.

    No full text
    The effects of prednisolone treatment on the cellularity and cytokine (gamma interferon, interleukin-12, and inducible nitric oxide synthase) profiles of leprosy skin type 1 (reversal) reactions were studied using immunohistochemistry. Skin biopsies were taken from 15 patients with leprosy type 1 (reversal) reactions at days 0, 7, 28, and 180 after the start of steroid treatment. Prednisolone treatment had little effect at day 7, but by day 28 significant decreases were found in cytokine levels. Some patients maintained cytokine production at days 28 and 180. These results illustrate the strong Th1 profile of type 1 reactional lesions, the slow response to steroid therapy, and continuing activity at 180 days
    corecore