22 research outputs found

    Performance Evaluation of Common Rail Direct Injection (CRDI) Engine Fuelled with Uppage Oil Methyl Ester (UOME)

    Full text link
    For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation

    Differential Phosphorylation of Ribosomal Proteins in Arabidopsis thaliana Plants during Day and Night

    Get PDF
    Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants

    Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of <it>Escherichia coli </it>found in the hospital effluent.</p> <p>Methods</p> <p>This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. <it>Escherichia coli </it>isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints.</p> <p>Results</p> <p>Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in the hospital wastewater. Wastewater samples collected in the afternoon contained both a higher number and higher levels of antibiotics compared to samples collected in the morning hours. No amikacin was found in the wastewater, but <it>E.coli </it>isolates from all wastewater samples were resistant to amikacin. Although ciprofloxacin was the most prevalent antibiotic detected in the wastewater, <it>E.coli </it>was not resistant to it.</p> <p>Conclusions</p> <p>Antibiotics are entering the aquatic environment of countries like India through hospital effluent. In-depth studies are needed to establish the correlation, if any, between the quantities of antibiotics prescribed in hospitals and the levels of antibiotic residues found in hospital effluent. Further, the effect of this on the development of bacterial resistance in the environment and its subsequent public health impact need thorough assessment.</p

    Beam spin asymmetry measurements of deeply virtual π0 production with CLAS12

    Get PDF
    The new experimental measurements of beam spin asymmetry were performed for the deeply virtual exclusive pi0 production in a wide kinematic region with the photon virtualities Q2 up to 6.6 GeV2 and the Bjorken scaling variable xB in the valence regime. The data were collected by the CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab with longitudinally polarized 10.6 GeV electrons scattered on an unpolarized liquid-hydrogen target. Sizable asymmetry values indicate a substantial contribution from transverse virtual photon amplitudes to the polarized structure functions. The interpretation of these measurements in terms of the Generalized Parton Distributions (GPDs) demonstrates their sensitivity to the chiral-odd GPD ET, which contains information on quark transverse spin densities in unpolarized and polarized nucleons and provides access to the nucleon's transverse anomalous magnetic moment. Additionally, the data were compared to a theoretical model based on a Regge formalism that was extended to the high photon virtualities

    Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi) Dual Fuel Engines

    Full text link
    Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI) compression ignition (CI) engine provided with CMFIS (Conventional Mechanical Fuel Injection System) was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME) in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG) gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC), carbon monoxide (CO) and slightly increased nitric oxide (NOx) emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar) injection of the RuOME and closer to TDC (Top Dead Centre) as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage

    Performance Of Biodiesel Powered Diesel Engine With Different Injection Strategies

    Full text link
    The compression ignition (CI) engine is robust and deliver better performance with diesel and biodiesels. Rubber seed oil biodiesel (BRO) was tested for its feasibility as CI engine fuel. Exhaustive investigations were performedto study the effect of fuel injection timing (IT)andfuel injector opening pressure (IOP)on the performance, emission and combustion characteristics. The selected fuel showed better performance with IT of 27° bTDC (before top dead center)andinjector opening pressure (IOP) of 240 bar. At the optimum operating conditions BTE 27%, HC43 ppm, CO0.137vol.%, NOx 1080 ppm at 80% load. Overall the diesel engine yield higher BTE and lower emissions except NOx at IT of 27obTDC and 240 bar IOP

    Effect of Fuel Injection Timing, Injection Pressure and Combustion Chamber Shapes on the Performance of Diesel Engine Run on Biodiesel

    Full text link
    The compression ignition (CI) engine is knownfor robustnessand itsbetter performance when powered with diesel orbiodiesel. In this work Rubber seed oil biodiesel (BRO) was used as CI engine fuel. Experimental tests were conducted on diesel engine to study the effect of fuel injection timing (IT),fuel injector opening pressure (IOP)and combustion chamber shapes (CCS) on the performance, emission and combustion characteristicswhen run on BRO. In the first phase the IT and IOP were optimized. In the second phase, the effect of combustion chamber shapes was studied. The test fuel yielded better resultswith 27° bTDC (before top dead center)IT,240 bar injector opening pressure (IOP)and reentrant toroidal combustion chamber (RCC). At the best operating conditions BTE 28.8%, smoke 47 HSU, HC38ppm, CO0.135vol.%, NOx 1182ppm at 80% load. Lower ignition delay (ID) and combustion duration (CD) with higher peak pressure (PP) and heat release rate (HRR). Overall,the diesel engine yieldedhigher BTE and lower emissions except NOx withIT of 27obTDC,240 bar IOPand RC
    corecore