14 research outputs found

    Breeding strategies for improving growth and yield under waterlogging conditions in maize: A review

    Get PDF
    Waterlogging, caused by flooding, excessive rains and poor drainage is a serious abiotic stress determining crop productivity worldwide. Maize (Zea mays L) is a basic food grain in many areas and several cultures and is culti- vated under much diverse agro-climatic zones extending from subtropical to cooler temperate regions. Therefore, the crop remains open to varied types of biotic as well as abiotic stresses. Among various abiotic stresses, water- logging is one of the most important constraints for maize production and productivity. Breeding for improved wa- terlogging tolerance includes modification of plant morphology, use of tolerant secondary traits and development of resistant varieties through conventional breeding and biotechnological approaches. A successful programme in conventional breeding should involve the integration of several criteria into one selection index and also successful breeding programmes for improved tolerance to submergence stress frequently combine two or more breeding strategies. Marker assisted selection (MAS) is an effective approach to identify genomic regions of crops under stress and construction of molecular linkage maps enable carry out pyramiding of desirable traits to improve sub- mergence tolerance through MAS

    Breeding Maize for Food and Nutritional Security

    Get PDF
    Maize occupies an important position in the world economy, and serves as an important source of food and feed. Together with rice and wheat, it provides at least 30 percent of the food calories to more than 4.5 billion people in 94 developing countries. Maize production is constrained by a wide range of biotic and abiotic stresses that keep afflicting maize production and productivity causing serious yield losses which bring yield levels below the potential levels. New innovations and trends in the areas of genomics, bioinformatics, and phenomics are enabling breeders with innovative tools, resources and technologies to breed superior resilient cultivars having the ability to resist the vagaries of climate and insect pest attacks. Maize has high nutritional value but is deficient in two amino acids viz. Lysine and Tryptophan. The various micronutrients present in maize are not sufficient to meet the nutritive demands of consumers, however the development of maize hybrids and composites with modifying nutritive value have proven to be good to meet the demands of consumers. Quality protein maize (QPM) developed by breeders have higher concentrations of lysine and tryptophan as compared to normal maize. Genetic level improvement has resulted in significant genetic gain, leading to increase in maize yield mainly on farmer’s fields. Molecular tools when collaborated with conventional and traditional methodologies help in accelerating these improvement programs and are expected to enhance genetic gains and impact on marginal farmer’s field. Genomic tools enable genetic dissections of complex QTL traits and promote an understanding of the physiological basis of key agronomic and stress adaptive and resistance traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Efforts are being done worldwide by plant breeders to develop hybrids and composites of maize with high nutritive value to feed the people in future

    Dihydro-β-agarofuran sesquiterpene pyridine alkaloids from the seeds of Euonymus hamiltonianus

    No full text
    Plants of the Celastraceae family produce various dihydro-β-agarofuran sesquiterpene pyridine alkaloids. Two dihydro-β-agarofuran sesquitepene pyridine alkaloids (1,2) apart from four known compounds euojaponin C (3), wilforine (4), austronine (5) and O9-benzoyl-O9-deacetylevonine (6), were isolated from the ripe seeds of Euonymus hamiltonianus. Their chemical structures were elucidated mainly by analysis of NMR and MS spectral data. All compounds were evaluated for insecticidal activity

    Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways

    No full text
    Both in-situ and space-borne observations reveal an extremely high loading of particulates over the Indo-Gangetic Plains (IGP), all year around. With a burgeoning population and combustion sources (fossil fuels (FFs) and biofuels (BFs)) in close proximity to each other, the IGP is widely regarded as a hotspot for anthropogenic aerosol emission in South Asia. The deteriorating air quality over this region, particularly during winters, is a cause of major concern, since the pollutants undergo long range transport from their source regions to the Indo-Himalayan Range (IHR), Bay of Bengal (BoB) and other remote areas, polluting their pristine atmospheric conditions. Seasonal reversal in winds over the Indian mainland leads to an outflow of continental pollutants into the BoB during winters and a net advection of desert dust aerosols into the IGP from southwest Asia (SW-Asia), northwest India (NW-India) and northern Africa (N-Africa) during summers. Through the course of this study, four observational campaigns were conducted for sampling the ambient PM2.5 and PM10 during winter and summer seasons of 2014-2015, at multiple locations (18 sites) in the IGP, IHR, and semi-arid/arid sites towards their south and west, in order to accurately determine the inter-seasonal and inter-annual changes in the aerosol loading at the sites. We have also utilized data from Moderate Resolution Imaging Spectroradiometer (MODIS) on-board Earth Observing System (EOS) Terra satellite for estimating the columnar Aerosol Optical Depth at 550 nm (AOD(550)) and data from EOS Terra and Aqua satellites for discovering openly burning fires in the vicinity of sampling sites. Determination of the major source regions and key transport pathways during both seasons have also been attempted, using back-trajectory cluster analyses, as well as receptor models such as PSCF and CWT
    corecore