5 research outputs found

    IoT-Based Water Quality Assessment System for Industrial Waste WaterHealthcare Perspective

    Full text link
    The environment, especially water, gets polluted due to industrialization and urbanization. Pollution due to industrialization and urbanization has harmful effects on both the environment and the lives on Earth. This polluted water can cause food poisoning, diarrhea, short-term gastrointestinal problems, respiratory diseases, skin problems, and other serious health complications. In a developing country like Bangladesh, where ready-made garments sector is one of the major sources of the total Gross Domestic Product (GDP), most of the wastes released from the garment factories are dumped into the nearest rivers or canals. Hence, the quality of the water of these bodies become very incompatible for the living beings, and so, it has become one of the major threats to the environment and human health. In addition, the amount of fish in the rivers and canals in Bangladesh is decreasing day by day as a result of water pollution. Therefore, to save fish and other water animals and the environment, we need to monitor the quality of the water and find out the reasons for the pollution. Real-time monitoring of the quality of water is vital for controlling water pollution. Most of the approaches for controlling water pollution are mainly biological and lab-based, which takes a lot of time and resources. To address this issue, we developed an Internet of Things (IoT)-based real-time water quality monitoring system, integrated with a mobile application. The proposed system in this research measures some of the most important indexes of water, including the potential of hydrogen (pH), total dissolved solids (TDS), and turbidity, and temperature of water. The proposed system results will be very helpful in saving the environment, and thus, improving the health of living creatures on Earth

    Transient Voltage Distribution in Bushing

    No full text
    An electrical bushing is one of the most important elements in a power transformer. Steep front surges such as transient impulse voltage from lightning strikes is an inevitable electromagnetic transient mostly happening in power transmission and distribution system. The bushing might lead to be degraded due to such kind of surge. This project deals with overvoltage stress distribution on the transformer bushing under the effect of electromagnetic transient response such as lightning impulse.  To understand the behavior of transient response on the bushing, a proper model of power transformer bushing is built-in Comsol multiphysics to authenticate the stress distribution. The electromagnetic wave of impulse propagates onto the overhead line that connects with the transformer. Some understanding of the transient behavior of a conductor bushing has been achieved through studying the influence of inductance property and the skin effect characteristics of a multi-layer coaxial cable on the wave propagation, which has been structured in this project to simplify the model. On the other hand, the skin effect analysis on the conductor of the bushing has been taken also into account in this project using real conductor simulation in the Comsol model. Thus, it will be interesting to compare the real conductor model with the perfect conductor of the bushing through analyzing the current density effect on it.  In this project, multi-layer of coaxial cable and transformer bushing are simulated. The simulation is carried out for time domain and frequency domain in Comsol based on the model characteristics. En elektrisk genomföring är ett av de viktigaste elementen i en transformator. Spänningsvågor med branta fronter som impulsspänningar från blixtnedslag är ett oundvikligt elektromagnetiskt övergående fenomen som oftast sker i kraftöverförings- och distributionssystem. Genomföringen kan leda till att degraderas på grund av en sådan våg. Detta projekt handlar om fördelning av överspännings på transformatorgenomföringen under påverkan av elektromagnetisk transient respons, såsom blixtimpuls.  För att förstå beteendet hos övergående respons på genomföringen är en korrekt modell av transformatorgenomföring inbyggd Comsol-flerfysik för att autentisera spänningsfördelningen. Den elektromagnetiska impulsvågen fortplantas från luftledningen som ansluter till transformatorn. Viss förståelse för det övergående beteendet hos en ledargenomföring har uppnåtts genom att studera påverkan av induktansegenskaper och hudeffektegenskaperna hos en flerskikts koaxialkabel på vågutbredningen, vilket har strukturerats i detta projekt för att förenkla modellen. Å andra sidan har hudeffektanalysen på genomföringens ledare beaktats i detta projekt med användning av verklig ledarsimulering i Comsol-modellen. Således blir det intressant att jämföra den riktiga ledarmodellen med den perfekta ledaren för genomföringen genom att analysera strömtäthetseffekten på den.  I detta projekt simuleras flerskikt av koaxialkabel och transformatorgenomföring. Simuleringen utförs för tidsdomän och frekvensdomän i Comsol baserat på modellegenskaperna

    Transient Voltage Distribution in Bushing

    No full text
    An electrical bushing is one of the most important elements in a power transformer. Steep front surges such as transient impulse voltage from lightning strikes is an inevitable electromagnetic transient mostly happening in power transmission and distribution system. The bushing might lead to be degraded due to such kind of surge. This project deals with overvoltage stress distribution on the transformer bushing under the effect of electromagnetic transient response such as lightning impulse.  To understand the behavior of transient response on the bushing, a proper model of power transformer bushing is built-in Comsol multiphysics to authenticate the stress distribution. The electromagnetic wave of impulse propagates onto the overhead line that connects with the transformer. Some understanding of the transient behavior of a conductor bushing has been achieved through studying the influence of inductance property and the skin effect characteristics of a multi-layer coaxial cable on the wave propagation, which has been structured in this project to simplify the model. On the other hand, the skin effect analysis on the conductor of the bushing has been taken also into account in this project using real conductor simulation in the Comsol model. Thus, it will be interesting to compare the real conductor model with the perfect conductor of the bushing through analyzing the current density effect on it.  In this project, multi-layer of coaxial cable and transformer bushing are simulated. The simulation is carried out for time domain and frequency domain in Comsol based on the model characteristics. En elektrisk genomföring är ett av de viktigaste elementen i en transformator. Spänningsvågor med branta fronter som impulsspänningar från blixtnedslag är ett oundvikligt elektromagnetiskt övergående fenomen som oftast sker i kraftöverförings- och distributionssystem. Genomföringen kan leda till att degraderas på grund av en sådan våg. Detta projekt handlar om fördelning av överspännings på transformatorgenomföringen under påverkan av elektromagnetisk transient respons, såsom blixtimpuls.  För att förstå beteendet hos övergående respons på genomföringen är en korrekt modell av transformatorgenomföring inbyggd Comsol-flerfysik för att autentisera spänningsfördelningen. Den elektromagnetiska impulsvågen fortplantas från luftledningen som ansluter till transformatorn. Viss förståelse för det övergående beteendet hos en ledargenomföring har uppnåtts genom att studera påverkan av induktansegenskaper och hudeffektegenskaperna hos en flerskikts koaxialkabel på vågutbredningen, vilket har strukturerats i detta projekt för att förenkla modellen. Å andra sidan har hudeffektanalysen på genomföringens ledare beaktats i detta projekt med användning av verklig ledarsimulering i Comsol-modellen. Således blir det intressant att jämföra den riktiga ledarmodellen med den perfekta ledaren för genomföringen genom att analysera strömtäthetseffekten på den.  I detta projekt simuleras flerskikt av koaxialkabel och transformatorgenomföring. Simuleringen utförs för tidsdomän och frekvensdomän i Comsol baserat på modellegenskaperna

    A neighbour discovery approach for cognitive radio network using tower of Hanoi (ToH) sequence based channel Rendezvous

    No full text
    Cognitive Radio Network (CRN) is a relatively new research area to improve spectral efficiency of wireless communication. Nowadays, the concept of commercial CRN (i.e., existence of primary and secondary users in licensed bands) is gaining popularity in wireless communication research. In fact, scarcity of bandwidth due to large number of wireless devices in different networks guides the unlicensed ISM (Industrial, Scientific and Medical) band to a saturation state. However, in CRN, at the absence of primary user, opportunistic medium access into licensed bands by the secondary users in different channels renders better bandwidth provisioning. The main concern and challenge for the CRN is channel rendezvous amongst the secondary users to discover the neighbours. A large number of existing works propose the channel rendezvous solutions using pseudo random channel hopping (i.e., switch from one channel to other) sequence. However, we argue that pseudo random sequence cannot provide efficient channel rendezvous in many scenarios and sometimes even the secondary users do not discover their neighbours. Hence, in this paper, we propose a channel hopping sequence method using the Tower of Hanoi (ToH) algorithm for multi-channel rendezvous amongst the secondary users of CRN. We have analysed and implemented the proposed mechanism, and found that it provides better results in terms of number of iteration and success rate for channel rendezvous than that of pseudo random approach

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore