27 research outputs found

    Quantitative genome-scale metabolic modeling of human CD4+ T cell differentiation reveals subset-specific regulation of glycosphingolipid pathways

    Get PDF
    T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.</p

    Stereo-Selectivity of Human Serum Albumin to Enantiomeric and Isoelectronic Pollutants Dissected by Spectroscopy, Calorimetry and Bioinformatics

    Get PDF
    1–naphthol (1N), 2–naphthol (2N) and 8–quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (Kb) of these pollutants to HSA were moderate (104–105 M−1). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39–5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy–entropy compensation (EEC). The difference observed between ΔCpexp and ΔCpcalc are suggested to be caused by binding–induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Cumulative effect of gibberellic acid and phosphorus on crop productivity, biochemical activities and trigonelline production in Trigonella foenum-graecum L.

    No full text
    Fenugreek (Trigonella foenum-graecum L.) is an antidiabetic plant. Its bioactive compound, trigonelline, is known to counter diabetes through insulin secretion, modulation of ÎČ cell regeneration and quick activity of glucose metabolism related enzymes. A pot experiment was conducted in the natural conditions of net house of the Department of Botany, Aligarh Muslim University, Aligarh (UP), India, to evaluate the effect of four concentrations of GA3 (0, 10−7 M, 10−6 M and 10−5 M), alone and in combination with phosphorus (40 kg P ha−1), on growth, biochemical and yield attributes of fenugreek. Compared to control, the combination of GA3 and phosphorus (P40 + 10−6 M GA3) significantly increased the activities of nitrate reductase (30.8%) and carbonic anhydrase (30.7%) enzymes; it also enhanced the seed yield (140.6%) and the content of total chlorophyll (28.5%) and carotenoids (26%). There was also significant increase (19.51%) in the content of seed trigonelline

    Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    No full text
    Catharanthus roseus (L.) G. Don (Family Apocynaceae) is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA) has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine) in C. roseus at 120 and 150 days after planting (DAP). Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1) significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively

    Therapeutic Applications of Biostable Silver Nanoparticles Synthesized Using Peel Extract of Benincasa hispida: Antibacterial and Anticancer Activities

    No full text
    The purpose of this study was to fabricate biostable inorganic silver nanoparticles (AgNPs) using fresh peel (aqueous) extract of Benincasa hispida. A fast, robust, and eco-friendly approach was used for the synthesis of AgNPs, where bioactive components of peel extract of B. hispida acted as reducing and stabilizing agents. Synthesized AgNPs were characterized using a UV&ndash;Vis spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and electron microscopy. The synthesized nanoparticles exhibited maximum absorption at 418 nm under the typical AgNPs surface plasmon resonance band range. They depicted a mean size of 26 &plusmn; 2 nm with a spherical shape. Their therapeutic prospective was determined by evaluating their antimicrobial and anticancer potential. The bio-synthesized silver nanoparticles exhibited strong antimicrobial activity with minimum inhibitory concentration (MIC 50) values of 14.5, 8.6, 6.063, and 13.4 &mu;g/mL against Staphylococcus aureus (ATCC 25923), Micrococcus luteus (ATCC 14593), Escherichia coli (ATCC 25922), and Klebsiella pneumonia (ATCC 13883), respectively. The biosynthesized AgNPs showed potent in vitro cytotoxicity against human cervical cancer cell line with a half maximal inhibitory concentration (IC50) value of 0.066 &mu;g/mL; however, no cytotoxic effect was observed on normal human primary osteoblasts cell line. This study explored B. hispida extract and confirmed its effectiveness as a promising source in producing AgNPs that could be employed for several therapeutic applications

    Modulation of physiological activities, active constituents and essential oil production of <i>Mentha arvensis</i> L. by concomitant application of depolymerised carrageenan, triacontanol and 28-homobrassinolide

    No full text
    <p>Cornmint (<i>Mentha arvensis</i> L.) constitutes most important source of therapeutic agents used in the alternative systems of medicine. The essential oil of cornmint has wide applications in pharmaceutical, agrochemical and flavoring industries worldwide. This study was conducted to explore the individual as well as combined effect of the best foliar concentrations of gamma-irradiated carrageenan (IC), triacontanol (TRIA) and 28-homobrassinolide (HBR) on growth, yield and quality of cornmint. Foliar application of IC, TRIA and HBR, applied individually on plants, significantly improved the plant attributes studied. However, combined application of these plant growth regulators (PGRs) was more effective compared to their individual application. In comparison to other applied treatments and the control, the combination of three PGRs (80 ppm IC + 10<sup>−6</sup> M TRIA + 10<sup>−7</sup> M HBR) proved to be the best for most of the growth, physiological, biochemical and agronomic parameters studied. Combined application of the tested PGRs excelled the control in per plant yield of menthol, menthone and menthyl acetate by 135.9 and 134.1%, 180.0 and 161.1% and by 225.0 and 187.5% at 100 and 120 days after planting, respectively.</p

    CIP2A constrains Th17 differentiation by modulating STAT3 signaling

    No full text
    Summary Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is an oncogene and a potential cancer therapy target protein. Accordingly, a better understanding of the physiological function of CIP2A, especially in the context of immune cells, is a prerequisite for its exploitation in cancer therapy. Here, we report that CIP2A negatively regulates interleukin (IL)-17 production by Th17 cells in human and mouse. Interestingly, concomitant with increased IL-17 production, CIP2A-deficient Th17 cells had increased strength and duration of STAT3 phosphorylation. We analyzed the interactome of phosphorylated STAT3 in CIP2A-deficient and CIP2A-sufficient Th17 cells and indicated together with genome-wide gene expression profiling, a role of Acylglycerol Kinase (AGK) in the regulation of Th17 differentiation by CIP2A. We demonstrated that CIP2A regulates the strength of the interaction between AGK and STAT3, and thereby modulates STAT3 phosphorylation and expression of IL-17 in Th17 cells
    corecore