578 research outputs found

    Eliciting Truthful Data from Crowdsourced Wireless Monitoring Modules in Cloud Managed Networks

    Get PDF
    To facilitate efficient cloud managed resource allocation solutions, collection of key wireless metrics from multiple access points (APs) at different locations within a given area is required. In unlicensed shared spectrum bands collection of metric data can be a challenging task for a cloud manager as indepen- dent self-interested APs can operate in these bands in the same area. We propose to design an intelligent crowdsourcing solution that incentivizes independent APs to truthfully measure/report data relating to their wireless channel utilization (CU). Our work focuses on challenging scenarios where independent APs can take advantage of recurring patterns in CU data by utilizing distribution aware strategies to obtain higher reward payments. We design truthful reporting methods that utilize logarithmic and quadratic scoring rules for reward payments to the APs. We show that when measurement computation costs are considered then under certain scenarios these scoring rules no longer ensure incentive compatibility. To address this, we present a novel reward function which incorporates a distribution aware penalty cost that charges APs for distorting reports based on recurring patterns. Along with synthetic data, we also use real CU data values crowdsourced using multiple independent measuring/reporting devices deployed by us in the University of Oulu

    Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Get PDF
    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues

    A Novel Derivatization Ultraviolet Spectrophotometric Method for the Determination of Amlodipine Besylate Using Benzoyl Chloride

    Get PDF
    The present research work aims to develop a novel ultraviolet UV spectrophotometric method for the determination of Amlodipine Besylate using Benzoyl Chloride as a derivatizing agent, which is simple, rapid, sensitive, selective, and accurate method for the spectrophotometric determination of Amlodipine Besylate in powder form.  Synthesis is based upon the Schotten Baumann Reaction. In this method, derivatization of aliphatic amine group of Amlodipine Besylate carried out with benzoyl chloride and aqueous sodium hydroxide (NaOH).The Ī»max was found to be 237 and 226nm for assay of Amlodipine Besylate and synthesised product respectively. The linearity was found in concentration range of 1-10 Ī¼g/ml. The correlation coefficient (r2)was found 0.9985. The regression equation, intercept (a) and slope (b) was found as Y=0.0762x - 0.0077, 0.0077 and 0.0762 respectively. Method was developed and validated as per ICH guidelines for linearity, accuracy, precision, LOD, LOQ, interday and intraday. The LOD and LOQ for estimation of Amlodipine besylate were found as 0.2367, 0.7178 respectively. Recovery of Amlodipine besylate was found to be 93.30%.The proposed method is found to be simple, rapid, selective and highly sensitive than most of the Spectrophotometric methods available in literature. Keywords: Derivatization, Ultraviolet spectrophotometry, Amlodipine besylate, Validation, Synthesis

    Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases.

    Get PDF
    PurposeThis study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families.MethodsLarge consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon-intron boundaries of RP1 were sequenced to identify the causal mutation.ResultsThe ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples.ConclusionsThese results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families

    Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases.

    Get PDF
    PurposeTo identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases.MethodsSeven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon-intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect.ResultsThe ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10(-6)) that affected individuals inherited the causal mutation from a common ancestor.ConclusionsPathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families

    A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor

    Get PDF
    A high capacitance and widened voltage frames for an aqueous supercapacitor system are challenging to realize simultaneously in an aqueous medium. The severe water splitting seriously restricts the narrow voltage of the aqueous electrolyte beyond 2 V. To overcome this limitation, herein, we proposed the facile wet-chemical synthesis of a new CuSe-TiO2-GO ternary nanocomposite for hybrid supercapacitors, thus boosting the specific energy up to some maximum extent. The capacitive charge storage mechanism of the CuSe-TiO2-GO ternary nanocomposite electrode was tested in an aqueous solution with 3 M KOH as the electrolyte in a three-cell mode assembly. The voltammogram analysis manifests good reversibility and a remarkable capacitive response at various currents and sweep rates, with a durable rate capability. At the same time, the discharge/charge platforms realize the most significant capacitance and a capacity of 920 F/g (153 mAh/g), supported by the impedance analysis with minimal resistances, ensuring the supply of electrolyte ion diffusion to the active host electrode interface. The built 2 V CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor accomplished a significant capacitance of 175 F/g, high specific energy of 36 Wh/kg, superior specific power of 4781 W/kg, and extraordinary stability of 91.3% retention relative to the stable cycling performance. These merits pave a new way to build other ternary nanocomposites to achieve superior performance for energy storage devices
    • ā€¦
    corecore