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Abstract: A high capacitance and widened voltage frames for an aqueous supercapacitor system are
challenging to realize simultaneously in an aqueous medium. The severe water splitting seriously
restricts the narrow voltage of the aqueous electrolyte beyond 2 V. To overcome this limitation, herein,
we proposed the facile wet-chemical synthesis of a new CuSe-TiO2-GO ternary nanocomposite for
hybrid supercapacitors, thus boosting the specific energy up to some maximum extent. The capacitive
charge storage mechanism of the CuSe-TiO2-GO ternary nanocomposite electrode was tested in an
aqueous solution with 3 M KOH as the electrolyte in a three-cell mode assembly. The voltammogram
analysis manifests good reversibility and a remarkable capacitive response at various currents and
sweep rates, with a durable rate capability. At the same time, the discharge/charge platforms
realize the most significant capacitance and a capacity of 920 F/g (153 mAh/g), supported by the
impedance analysis with minimal resistances, ensuring the supply of electrolyte ion diffusion to the
active host electrode interface. The built 2 V CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor
accomplished a significant capacitance of 175 F/g, high specific energy of 36 Wh/kg, superior specific
power of 4781 W/kg, and extraordinary stability of 91.3% retention relative to the stable cycling
performance. These merits pave a new way to build other ternary nanocomposites to achieve superior
performance for energy storage devices.

Keywords: CuSe; aqueous electrolyte; power density; energy density; impedance

1. Introduction

With the development of modern civilization, massive industrialization gives birth
to huge carbon dioxide emissions, which cause serious environmental problems, such
as global warming, air pollution, and the emission of toxic chemicals into the environ-
ment [1–3]. The poor energy density of supercapacitors can be optimized in two ways:
either by increasing the capacitance or expanding the voltage frame of the symmet-
ric/asymmetric/hybrid supercapacitors, as energy is related to the following expres-
sion [4,5]: E = 1

2 C × V2. The schematic, as given in Figure 1, presents the illustration
of the expansion of the voltage gap in this work by the theoretical model. The electrolysis
process paves a pivotal role in an aqueous supercapacitor. The voltage frame is limited
due to the severe water splitting at 1.23 V2 [6–8], which can be boosted by optimizing the
hydrogen evolution reaction (HER) that occurs on the positive electrode and the oxygen
evolution reaction (OER) on the negative electrode in the KOH aqueous solution. This
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further realizes the optimized electrolyte/electrolyte interface. It is therefore expected that
controlling the H+/OH− generation effectively contributed to enhancing the final voltage
limit of the potential electrodes [1,9], as given in Figure 1.
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Graphene oxide (GO) anticipated a favorable position in the electrochemical energy
domain due to its excellent chemical, optical, and mechanical properties [4,10,11]. The
theoretical capacitance is ~550 F/g [12], and the performance in the supercapacitor is still
far behind due to the severe agglomeration/restacking of different layers in applications
coupled with the synthesis procedure. Mixing GO with metal oxides/selenides has been
a hot topic for decades and has contributed substantially to defining the final charge
storage performance of the obtained product material. Titanium dioxide, denoted as TiO2,
is also utilized as an electrode for supercapacitors. Still, the free-standing electrode shows
unsatisfactory charge storage abilities, such as low capacitance and determined conductivity
during the charge storage process [13–16]. So far, metal oxide (V2O5, Co3O4, SnO2, MnO2,
CdO, and Fe2O3)/GO [8,17–21] composites have been researched and reported to solve
the stability of active electrodes and hydrophilicity-related drawbacks. Meanwhile, metal
sulfides (FeS2, NiCo2S4, VS2, SnS2, WS2, MoS2, NiS, Ni3S2, CuS, and ZnS) [22–29] are also
promising active materials for supercapacitors due to their high conductivity, suitable
redox activities owing to multiple oxidation states, semiconducting behavior, and lower
electronegativity. The main obstacles are the poor cycling lifespan due to the insulating
behavior of sulfur, the thermodynamic instability, the volatility, and the expansion of
sulfides-GO-based metal sulfide composites displayed an enhanced lifespan of pure metal
sulfides owing to the synergistic effect. The capacitance and upper voltage limit have not
been significantly enhanced so far; for instance, the rGO/TiO2/rGO ternary composite
(114.5 F/g), with a potential of 0 to 0.8 V [30], GO/TiO2, with a capacitance of 73.43 mF/cm2

at a potential of 0–1 V [31], rGO-TiO2 composites 225 F/g at the current of 0.025 A/g [32],
and a sandwich of a TiO2/rGO/TiO2 composite with 83.7 F/g [33] manifest that the
performance needs to be further enhanced. To optimize the performance of the GO and
TiO2 system, combining copper selenides (CuSe) [34–36] has recently been the hotspot and
has substantial importance in selenide-based electrodes for electrochemical energy domains
owing to their high conductivity, high theoretical capacity, several metallic states, and better
energy storage performance in aqueous electrolytes (CuSe/CuSe2@GO with 192.8 F/g, with
excellent stability until 10,000 cycles [37], the binderless electrode of CuSe2/Cu (1037 F/g
with supreme power and energy densities) [38], and CuSe/NiSe [39] (1478/990 from 1
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to 8 A/g) via the hydrothermal method) [40]. CuSe/Ni (OH)2 showed high stability and
significant capacitance when utilized as an effective electrode for flexible supercapacitor
applications [39]. Recently, our previous work demonstrated a heterostructured CuSe@TiO2
for a hybrid supercapacitor that boosts the low capacitance of CuSe to as high as 370 F/g
from 225 F/g at a low current rate in an aqueous solution [34]. There is another report
on the TiO2@CuSe nanocomposites from our group, with varying contents of CuSe and
TiO2 in which the optimal electrode ZT-3 delivers a capacitance of 184 F/g and 135 at the
currents of 2 to 9 A/g due to the synergy between the metal Ti and Cu elements, forming
solid structural integrity and sustainability [41]. Inspired by these results and strategies,
we follow the same materials, make a new CuSe-TiO2-GO ternary composite, and probe
its electrochemical charge storage performance in a KOH solution. As stated above, we
expected an excellent energy storage performance from this special heterostructure based
on our previous experience.

This paper mainly provided insight into developing a new CuSe-TiO2-GO ternary
composite for hybrid supercapacitor applications. The electrochemical properties reveal the
prepared nanocomposite’s remarkable reversibility and redox activity in a KOH solution in
the three-electrode assembly. A 36 Wh/kg specific energy was realized at 875 W/kg specific
power, which expanded to its maximum value of 4781 W/kg after adding an optimized
voltage of 2 V by constructing a CuSe-TiO2-GO||AC-GO|KOH hybrid supercapacitor.

2. Preparation of the Nanomaterials
2.1. Synthesis of CuSe

To prepare the selenium alkaline aqueous solution, 4 g of elemental selenium (BDH)
was dissolved in 12 M NaOH (Fisher Scientific, Beijing, China). As soon as the elemental
selenium dissolved, the solution’s color changed to orange-red. After the elemental sele-
nium was dissolved entirely, a Cu2+ solution made from CuCl2·2H2O (Fisher Scientific)
was added drop by drop to the selenium alkaline aqueous solution and rapidly stirred. The
produced black precipitate was centrifuged and rinsed with distilled water to remove the
surplus alkaline solution. The powder precipitation was subsequently dried for 24 h in
an oven at 343 K, as shown in Figure 2.
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2.2. TiO2 Synthesis

The hydrothermal approach synthesized TiO2 nano-powders using titanium tetraiso-
propoxide, distilled water, ethyl alcohol, and citric acid as the starting ingredients. Under
continuous magnetic stirring, titanium isopropoxide (TTIP) was added drop by drop to
distilled water, ethyl alcohol, and citric acid. The mixture was stirred for another 2 h before
being transferred to the stainless-steel autoclave with a Teflon lining. The sealed autoclave
was heat-treated for three hours at 150 ◦C. The autoclave was withdrawn from the oven
and cooled naturally to room temperature. The finished product was filtered and dried in
an open environment, as depicted in Figure 2.
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2.3. Preparation of GO

GO was prepared according to the modified Hummer method [18,22]. In further detail,
108 mL of H2SO4, 12 mL of H3PO4, 5 g of graphite, 2.5 g of NaNO3, and 12 mL of H3PO4
were combined and agitated in an ice bath for 10 min. Afterward, 15 g of KMnO4 was
added slowly while ensuring that the mixture’s temperature was maintained below 5 ◦C.
The suspension was then stirred for 60 min and reacted for 2 h in an ice bath before being
stirred once more for 60 min in a 40 ◦C water bath. The mixture was heated to a constant
98 ◦C for 60 min while water was continuously added. Additional deionized water was
added until the suspension reached 400 mL in it. After 5 min, 15 mL of H2O2 was added.
The result of the reaction was centrifuged and repeatedly rinsed with deionized water and
a 5% HCl solution. At 60 ◦C, the material was finally dried.

2.4. Preparation of the CuSe-TiO2-GO Ternary Nanocomposite

By varying the wt.% ratios of TiO2 sheets and CuSe nanoparticles, CuSe-TiO2 nanocom-
posites were synthesized. Briefly, sonication was used to scatter 25% weight ratios of TiO2
(relative to CuSe) and CuSe nanoparticles in 40 mL methanol. This mixture was stirred for
approximately thirty minutes before being thoroughly rinsed with DI water and ethanol.
The product was subsequently dried at 60 ◦C; using the same process for CuSe-TiO2-GO
nanocomposites, 50% weight ratios of CuSe-TiO2 and GO were achieved (relative to GO).

2.5. Characterization and Electrode Preparation

FESEM first examined the morphology and elemental analysis of the ternary nanocom-
posite with the TESCAN model MAIA-3 (Islamabad, Pakistan). The Raman spectroscopy is
measured to the symmetry of different bonds in the CuSe-TiO2 and GO ternary composite
by Model, Dongwoo Optron Co. Ltd (Islamabad, Pakistan). The crystal structure, facile
preparation, and phase purity of the sample were detected by utilizing X-ray diffraction
examination with the model number EQUINOX-3000 (Thermo Scientific, Islamabad, Pak-
istan), Cu Kα irradiation with a wavelength of 1.54 nm, and a step size of 0.01 at a 10 to 90º
theta range.

Three- and two-cell modes were employed to probe the electrochemical properties of
the novel CuSe-TiO2-GO ternary nanocomposite in an aqueous solution. Several electro-
chemical techniques were tested for functional electrochemistry studies at various scans and
currents, such as impedance, charge/discharge platforms, and the cyclic voltammogram.
A hybrid supercapacitor was assembled with AC-GO as an anode and CuSe-TiO2-GO
ternary nanocomposite as the anode in a sandwich configuration using aqueous KOH as
the electrolyte.

3. Results and Discussion

The surface overview of the composite was verified by field emission scanning electron
microscopy (FESEM) analysis, and the related image is provided in Figure 3a–c with differ-
ent scale bars. The FESEM diagram reveals that the CuSe is composed of a snow-crystal-like
morphological appearance that provides sufficient pathways for the immobilization of ions
during electrochemical activities. The CuSe is attached to the TiO2 and wrapped with GO.
The good overlapping of the CuSe and TiO2 reduced the volume variation after inserting
K-ions into the host matrix. It enhanced the overall capacitance due to its excellent con-
ductivity. Moreover, the GO offers conductive pathways for charge kinetics. The collective
contribution of different metal cations and carbon materials boosts the final performance
of the electrode, which can be validated from the electrochemical performance. Addition-
ally, no other impurity residues were absent on the surface of the CuSe-TiO2-GO ternary
nanocomposite, revealing the high purity of the sample. This can be further verified by
EDX analysis, as given in Figure 3d. As shown in Figure 3d, only respective elements can
be distinguished in the spectrum, e.g., O, Cu, Se, Ti, and C peaks were detected, proving the
samples’ high purity, which coincides with the FESEM and X-ray diffraction investigations.



Nanomaterials 2023, 13, 123 5 of 13

Nanomaterials 2023, 1, x FOR PEER REVIEW 5 of 14 
 

 

crystal-like morphological appearance that provides sufficient pathways for the immobi-
lization of ions during electrochemical activities. The CuSe is attached to the TiO2 and 
wrapped with GO. The good overlapping of the CuSe and TiO2 reduced the volume var-
iation after inserting K-ions into the host matrix. It enhanced the overall capacitance due 
to its excellent conductivity. Moreover, the GO offers conductive pathways for charge ki-
netics. The collective contribution of different metal cations and carbon materials boosts 
the final performance of the electrode, which can be validated from the electrochemical 
performance. Additionally, no other impurity residues were absent on the surface of the 
CuSe-TiO2-GO ternary nanocomposite, revealing the high purity of the sample. This can 
be further verified by EDX analysis, as given in Figure 3d. As shown in Figure 3d, only 
respective elements can be distinguished in the spectrum, e.g., O, Cu, Se, Ti, and C peaks 
were detected, proving the samples’ high purity, which coincides with the FESEM and X-
ray diffraction investigations. 

 
Figure 3. (a–c) Morphological analysis of the sample by the FESEM diagram at different scale bars, 
(d) EDX spectrum of the CuSe-TiO2-GO nanocomposite. 

The CuSe-TiO2-GO ternary nanocomposite phase purity, adequate formation, and 
crystallinity were confirmed by X-ray diffraction analysis, and the results are given in Fig-
ure 4a. The X-ray diffraction pattern of the CuSe-TiO2-GO nanocomposite showed a col-
lective appearance of CuSe, TiO2, and GO in the final product, showing the appropriate 
synthesis of the product—more specifically, the TiO2 tetragonal anatase crystal phase with 
the JCPDS No: 01-084-1285 relative to the 2θ values at 25.30°, 38.5°, 48.03°, 53.8°, 55°, 
62.69°, 68.76°, 70.2°, 75.05°, and 82.76° assigned to (101), (112), (200), (1050, (211), (204), 
(116), (220), (215), and (224) planes, as depicted in Figure 4a. Additionally, the CuSe sam-
ple also showed a signature in the X-ray diffractogram with a peak at 26.2, 31.7°, 32.6°, 
45.5°, 53.3°, 57.1°, and 65.2°, related to the miller indices of (100), (001), (120), (110), (200), 
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(d) EDX spectrum of the CuSe-TiO2-GO nanocomposite.

The CuSe-TiO2-GO ternary nanocomposite phase purity, adequate formation, and
crystallinity were confirmed by X-ray diffraction analysis, and the results are given in
Figure 4a. The X-ray diffraction pattern of the CuSe-TiO2-GO nanocomposite showed a
collective appearance of CuSe, TiO2, and GO in the final product, showing the appropriate
synthesis of the product—more specifically, the TiO2 tetragonal anatase crystal phase
with the JCPDS No: 01-084-1285 relative to the 2θ values at 25.30◦, 38.5◦, 48.03◦, 53.8◦,
55◦, 62.69◦, 68.76◦, 70.2◦, 75.05◦, and 82.76◦ assigned to (101), (112), (200), (1050, (211),
(204), (116), (220), (215), and (224) planes, as depicted in Figure 4a. Additionally, the CuSe
sample also showed a signature in the X-ray diffractogram with a peak at 26.2, 31.7◦, 32.6◦,
45.5◦, 53.3◦, 57.1◦, and 65.2◦, related to the miller indices of (100), (001), (120), (110), (200),
(111), (002), and (208), which could be oriented as a hexagonal crystal structure, which
coincides nicely with the JCPDS#00-027-0185. Moreover, the GO peaks at a 2θ value of
10.4◦, corresponding to (001) and 43.4◦ (111) crystalline plane values. After that, no other
impurities/byproducts/residues were absent during the formation process of the samples,
marking the high purity, and the sharp peaks indicate the product’s excellent crystallinity.
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The low-temperature Raman analysis can further validate this, and their corresponding
graph is schematically shown in Figure 4b. Raman shifts at 150 cm−1 (Eg), 410 cm−1 (A1g),
520 cm−1 (B1g), and 620 cm−1 (Eg) are the vibrational modes of the TiO2. Additionally,
the CuSe sample displayed three vibrational modes at 209.3 cm−1 (A1g), 256.4 cm−1, and
492.7 cm−1 (Eg), which could be assigned to the vibrational stretching mode (A1g) due to
the Cu-Se bond. Two new peaks are established at 1353 cm−1 due to the D and G bands
around 1627 cm−1 of the GO, as shown in the zoomed region in the inset in Figure 4b.
The Raman analysis is also consistent with the X-ray diffraction results, which leads to the
successful formation of the potential CuSe-TiO2-GO ternary nanocomposite.

The electrochemical properties of the CuSe-TiO2-GO ternary nanocomposite electrode
were carefully judged by several electrochemical testing techniques utilizing an aqueous
conductive medium. Generally, a three-electrode setup was operated to determine the
host electrode’s capacitive charge storage signature, reversible/irreversible reactions, and
rate capability. Convincingly, the cyclic voltammogram of the CuSe-TiO2-GO ternary
nanocomposite electrode is displayed in Figure 5a between 0.0 and 0.6 V as the potential
range with various scans. It was seen that a mirror voltammogram was well sustained
from the low scan speed to higher scans, demonstrating the increased accessibility of the
ions during the electrochemical process. The enclosed loop area expands with changing
scan speeds, indicating the excellent reversibility and rate capability of the CuSe-TiO2-GO
ternary nanocomposite electrode. Due to the high resistance and polarization phenomena,
more negative-to-positive potentials were effectively seen in the voltammograms [34,42].
The discharge/charge platforms of the CuSe-TiO2-GO ternary nanocomposite electrode
were performed utilizing various currents. Their corresponding plot is depicted in Figure 5b.
The discharge platforms consist of three parts, a sudden voltage drop due to the internal
resistance, a curved region denoting the faradaic reactions due to the pseudocapacitive
nature of the CuSe and TiO2, and, lastly, the double-layer contribution from GO. The
well-defined shape analogy from minor to more effective current rates sounds towards the
high speed and reversibility of the composite electrode. Due to the distinguished voltage
plateaus, the discharge/charge platforms demonstrated the pseudocapacitive response.
Based on Equation (1), the capacitance at the desired currents is further calculated, and the
results are plotted against different current rates in Figure 5c.

C = I × t/V × m (1)
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V, m, and t specify the potential, the mass loading on the current collector, and the
discharge time, while I denotes the current enclosed by the CV.

A high 920 F/g (153 mAh/g) is calculated for the CuSe-TiO2-GO ternary nanocompos-
ite electrode at 1 A/g, which is much larger than that in the previous literature, such as
543.9 F/g for CuSe@FeOOH [35], 370 F/g (CuSe@TiO2) [34], 165 F/g (graphene@TiO2) [43],
837.7 F/g for Poly (methyl methacrylate, PMMA)/GO/IrO2 [44], 895 F/g for Cr2O3/GO/
polyaniline (PANI), 280 F/g for PANI-H2SO4, TiO2 [45], NiS/GO (800 F/g) [46], 743 F/g for
the GO/PANI/Ni(OH)2 nanocomposite [47], indium tin oxide (ITO)/GO/VO composite of
949.6 F/g [48], 773 F/g for MnS/GO/PANI [49], 251 F/g for GO@ multiwalled carbon nan-
otubes (MWCNTs) [50], 707 F/g for MWCNT/GO/NiCo2O4 hybrid composite [51], and
355.2 F/g for the PANI-GO [52] composite, respectively, as shown in Figure 5c. Table 1 il-
lustrates the capacitance values of the CuSe-TiO2-GO ternary nanocomposite at the desired
current rates. The only outer surface interaction was observed at the electrode/electrolyte
interface for the CuSe-TiO2-GO ternary nanocomposite electrode at more significant current
rates; hence, a continuous decay in capacitance was seen. Coulombic efficiency is also
calculated, as tabulated in Table 1. It was attractive to note that the coulombic efficiency
first decreased due to a low discharge time and then increased and sustained. The poor
coulombic efficiency is due to the parasitic reaction during discharge cycles, leading to
the poor Coulombic efficiency of the active electrode. The impedance spectroscopy (IS)
further deeply analyzes the charge transport kinetics in an aqueous medium regarding
charge transfer and solvent resistance, as shown in Figure 5d. Generally, the IS shines
a light on the kinetics of the charge transfer process in an electrochemical system. The steep
vertical line denotes the diffusion resistance of the electrolyte, the intersection at the real
axis defines the solution resistance, and the half-circle with its diameter signifies the charge
transfer resistance of the host electrodes. Herein, our work manifests the smallest values
of the resistances (see Figure 5d), supporting the high conductivity of the CuSe-TiO2-GO
nanocomposite electrode, which confirms the prompt supply of the ions to the inner and
outer surfaces of the electrode. Additionally, the multicomponent in the composite matrix
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brings synergy, which promotes effective utilization, and structural integration is sustained
during repeated electrochemical discharge and charge processes.

Table 1. The current discharge rates and the capacitance values of the CuSe-TiO2-GO nanocomposite.

Current Density (A/g) 1 3 5 7 9 12

Specific Capacitance (F/g) 920 817 750 633 553 321

Specific Capacity (mAh/g) 153 136 125 105 93 53

Coulombic Efficiency (%) 69 58 54 77 73 73

The electric charge storage performance of the CuSe-TiO2-GO ternary nanocomposite
was progressively assessed in a 3 M KOH aqueous solution as a conducting medium for
K-ion migration in an electrolyte towards the negative electrode and OH− ions to the
cathode during the charging process. An electron from the external circuit moves toward
the anode to maintain charge neutrality. Theoretically, the approximate upper cutoff voltage
is expected to be as high as 2 V (adding the positive and negative voltages). The CV dia-
gram of the fabricated CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor is shown in
Figure 6a from 0 to 2 V, utilizing the CuSe-TiO2-GO nanocomposite and the activated carbon
with GO (AC-GO) as the cathode and anode electrodes, respectively. The CV diagram was
taken at disparate scans ranging from 10 to 50, 100, 150, and 200 mV/s (see Figure 6b). No
apparent change in the enclosed loops and analog shape was sustained in all the scanning,
revealing the excellent rate capability and superior power delivery with good reversibility.
The CV diagram displayed a non-rectangular shape owing to the pseudocapacitive charge
storage mechanism of the CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor. The
absence of a CV tail towards the maximum voltage cutoff signifies not much electrolyte
decomposition, possibly due to the expansion of OER/HER activities. Meanwhile, this
further confirms that the chosen voltage is the stable and suitable voltage limit for the
as-built CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor. To support our results
more convincingly, continuous discharge/charge platforms were performed at different
currents, as depicted in Figure 6c. It is noted that the upper voltage cutoff (herein, 2 V)
is preserved at numerous current rates. The discharge time equates to the charging time,
indicating the tremendous coulombic efficiency of the CuSe-TiO2-GO||AC-GO||KOH
hybrid supercapacitor. The shape of the discharge curves is unchanged, as designated by
the high-rate performance of the CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor.
According to Equation (1), the capacitance for the CuSe-TiO2-GO||AC-GO||KOH hybrid
supercapacitor was determined, as displayed in Figure 6c. It was worth noting that a
significantly large capacitance of 175 F/g and 96 F/g was maintained when the current
prolonged from 1 to 10 A/g, indicating a high capability (54.8%) of the CuSe-TiO2-GO||AC-
GO||KOH hybrid supercapacitor, as depicted in Figure 6d. The acquired capacitance of
the CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor surpasses previous literature
reports: 103.4 F/g GO-Ppy-Ag//AC [53], 152 C/g CoMoO4@r-GO||AC [54], 189 F/g
for Fe2O3@GO//Ni3(PO4)2@GO [55], 115.15 F/g for Poly(3,4-ethylenedioxythiophene,
PEDOT) PEDOT/GO||AC [56], 152 F/g for PPy/Ni2P/GO//AC [49], and 100 F/g for
Cr2O3/GO/Ppy||AC [57]. The distinct and detailed capacitance values at each current
are listed in Table 2.
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Table 2. The capacitance and specific energy/power values at different current rates.

Current Density (A/g) 1 2 5 7 10

Specific Capacitance (F/g) 175 143 132 111 96

Specific Energy (Wh/kg) 36 27 22 19 15

Specific Power (W/kg) 875 1281 2193 3477 4781

The two critical factors in estimating practical performance validation are specific
energy and power. The following equations are utilized to obtain extraordinary specific
energy/power [58].

Specific energy (S.E) = 1/7.2 CV2 (2)

Specific power (S.P) = 3600 E/t (3)

V, C, and t specify the CV and discharge platform voltage, capacitance, and dis-
charge time.

According to Equation (2), a calculated specific energy of 36 Wh/kg was determined
and reached its lowest point of 15 Wh/kg after 10 times increase in the current rates. The
specific power of 4781 W/kg (Equation (3)) is displayed in Figure 7a. These values are
comparable to or even higher than several literature reports, as summarized in Table 3.
The specific power and energy at the designated current rates are schematically listed
in Table 2. These high values of specific energy and power delivery confirmed the high
conductivity of the heterostructured CuSe-TiO2-GO due to the synergistic impact of each
component contributing to the enhanced performance of the ternary electrode material.
Moreover, long-cycling stability is desirable for supercapacitors in real-life applications,
and the related graph is shown in Figure 7b.
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Table 3. CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor performance comparison with
literature reports based on GO, CuSe, and TiO2 hybrid/asymmetric supercapacitors.

Electrode Material Voltage (V) Capacitance (F/g) Specific Energy
(Wh/kg)

Specific Power
(W/kg) Stability (%) Ref.

CoSe2/CuSe hybrid SC 1.6 192.8 54.6 700 82.5@10k [37]

CuSe@TiO2|| AC ASC 1.8 70 31.5 4500 99.6@10k [34]

CuSe2/rGO|| CuS ASC 1.5 104 28.3 1538 86.5@5k [59]

TiO2/rGO|| AC ASC 3 89 42 800 80@10k [60]

Fe2O3@GO//Ni3(PO4)2@ GO ASC 1.6 189 67.2 1276.3 88@1k [55]

PEDOT/graphene
oxide supercapacitor 1.2 115.15 13.60 139.09 - [56]

CuS@carbon dot ASC 1.4 103 28 700 90@5k [61]

2D/2D NiCo-MOF/ GO ASC 1.6 162 C/g 36.83 374.99 - [62]

Re-GO@NiS2 ASC 1.6 80 28.31 800 83.34@10k [63]

MnSe/GO//AC 1.6 56.25 31.25 6779.20 86.3@5k [64]

MnSe2/rGO//AC 1.6 - 16.6 7200 99@10k [65]

CuSe-TiO2-GO||AC-GO||KOH
hybrid supercapacitor 2 175 36 4781 91.3@5k This work

The longevity measurements are taken for 5000 cycles at the highest current rate
to guarantee the synergy between multi-components (Figure 7b). A secure and stable
longevity performance due to the high conductivity of the CuSe-TiO2-GO ternary composite
was noticed, alleviating the volume change and accessing more accessible intercalation
pathways for K-ions into the host electrode, resulting in a stable cycling performance of
the CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor. A slight decline was observed
until 5000 cycles, which can be attributed to the structural degradation and morphological
failure during fast discharge/charge cycles at an upsurge current. Overall, the CuSe-TiO2-
GO||AC-GO||KOH hybrid supercapacitor achieved stable stability, with only 91.3%
capacitance retained at such a considerable current, proving its promising feature for
advanced energy storage devices.

4. Conclusions

This paper presents a simplistic and wet-chemical-assisted preparation of the CuSe-
TiO2-GO ternary composite for the energy storage domain. The formation of the CuSe-TiO2-
GO ternary composite was confirmed by the FESEM/EDX for morphological and elemental
analysis, x-ray diffraction, and Raman investigations for structural and phase confirmation.
At the same time, the charge storage performance was analyzed by electrochemical studies,
such as impedance analysis, discharge/charge platforms, and CV analysis, respectively,
in great detail. A high capacitance was executed due to the synergistic effect of the multi-
component in the composite structure, which attained a high conductive backbone and
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supported fast charge kinetics. Notably, a voltage of 2 V was realized by the CuSe-TiO2-
GO||AC-GO||KOH hybrid supercapacitor in an aqueous solution due to the expansion of
HER/OER activities during electrolysis. Interestingly, a good specific energy of 36 Wh/kg
was attained due to the high voltage and capacitance. A highly stable structural stability of
91.3% was realized during successive stability tests at an ultra-high current rate. Thus, our
work recognizes the optimal voltage and capacitance, which enlarged the energy density of
hybrid supercapacitors.
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