10 research outputs found

    New System for the Acceleration of the Airflow in Wind Turbines

    Get PDF
    Background: This patent is based on the wind industry technology called Diffuser Augmented Wind Turbines (DAWTs). This technology consists of a horizontal axis wind turbine, which is housed inside a duct with diverging section in the direction of the free air stream. In this paper, a review of preceding patents related to this technology is carried out. Objective: This paper presents an innovative patent to improve the performance of horizontal axis wind turbines. In particular, this system is aimed at improving the performance of those turbines that otherwise might not be installed due to the low wind resource existing at certain locations. Methods: The most innovative elements of this patent are: (1) the semi-spherical grooves, which are mechanized on the surface of the two diffusers in order to guarantee a more energetic boundary layer; (2) the coaxial diffuser, which is located downwind following the first diffuser in order to increase the suction effect on the air mass close to the inlet; (3) the coaxial rings located around the first diffuser outlet, which are used to deflect the external airflow toward the turbine wake; and (4), the selforientating system to orientate the system by the prevailing wind direction. Results: An application of the patent for increasing the power generated by a horizontal axis wind turbine with three blades is presented. The patent is designed and its performance is evaluated by using a Computational Fluid Dynamics code. The numerical results show that this system rises the airflow going through the rotor of the turbine. Conclusion: The patented device is an original contribution aimed at enabling a more profitable installation of wind turbines in places where the wind resource is insufficient because of the wind shear caused both by the proximity of the earth and the obstacles on the earth surface.This work was supported by the OASIS Research Project that was cofinanced by CDTI (Spanish Science and Innovation Ministry) and developed with the Spanish companies: Iridium, OHL Concesiones, Abertis, Sice, Indra, Dragados, OHL, Geocisa, GMV, Asfaltos Augusta, Hidrofersa, Eipsa, PyG, CPS, AEC and Torre de Comares Arquitectos S.L and 16 research centres. The authors also acknowledge the partial funding with FEDER funds under the Research Project FC-15-GRUPIN14-004. Finally, we also thank Swanson Analysis Inc. for the use of ANSYS University Research programs as well as the Workbench simulation environment

    Analysis and Optimization of Shrouded Horizontal Axis Wind Turbines

    No full text
    So-called wind-lens turbines offer the potential for improved energy efficiency and better suitability for urban and suburban environments compared to unshrouded or bare wind turbines. Wind-lenses, which are typically comprised of a diffuser shroud equipped with a flange, can enhance the wind velocity at the rotor plane due to the generation of a lower back pressure. This work comprises of two main studies which aim to develop fast and accurate simulation tools for the performance prediction and design of shrouded horizontal axis wind turbines. In the first study, a low-order theoretical model of ducted turbines is developed to establish a better understanding of the basic aerodynamics of shrouded wind turbines. Then a cost-effective CFD tool coupled with a multi-objective genetic algorithm is developed and employed to improve the performance of shrouded wind turbines.A low-order semi empirical model, which offers performance prediction for the power and thrust coefficients, is developed and applied to shrouded turbines. This 1D model is based on assumptions and approximations to calculate optimal power coefficients and power extraction, as well as augmentation ratios. It is revealed that the power enhancement is proportional to the mass stream rise produced by the nozzle diffuser-augmented wind turbine (NDAWT). Such mass flow rise can only be accomplished through two essential principles: an increase in the area ratios and/or by reducing the negative back pressure at the exit. The thrust coefficient for optimal power production of a conventional bare wind turbine is known to be 8/9, whereas the theoretical analysis of the NDAWT predicts an ideal thrust coefficient either lower or higher than 8/9 depending on the back-pressure coefficient at which the shrouded turbine operates. Computed performance expectations demonstrate a good agreement with numerical and experimental results, and it is demonstrated that much larger power coefficients than for traditional wind turbines are achievable. Lastly, the developed model is found to be very well suited for the preliminary design of shrouded wind turbines where typically many trade-off studies need to be conducted inexpensively.Then a higher fidelity model is developed and implemented to calculate the power, thrust, and drag coefficients by solving the Reynolds-averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence model for the flow within and around diffuser augmented wind turbines using the open source software OpenFOAM. To reduce the computational cost, the turbine rotor itself is modeled by incorporating blade element momentum body forces into the RANS equations. Realistic rotor data for the sectional lift and drag coefficients for all angles of attacks are utilized via look-up tables. Grid convergence studies for verification and comparisons with experiments for validation are carried out to demonstrate that the adopted methodology is able to accurately predict the performance of a wind-lens prior to performing shape optimizations.Finally, the wind-lens performance is increased by designing the shroud and wind turbine shapes as well as flange height through an optimization process that seeks to maximize the power while minimizing drag and thrust forces. The employed optimizer is a multi-objective genetic algorithm (MOGA). Bezier curves are used to define the chord and twist distribution of the turbine blades and a piece-wise quadratic polynomial is utilized to define the shroud shape. It is demonstrated that the resulting optimal designs yield significant improvements in the output power

    Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines

    No full text
    Numerous analytical studies for power augmentation systems can be found in the literature with the goal to improve the performance of wind turbines by increasing the energy density of the air at the rotor. All methods to date are only concerned with the effects of a diffuser as the power augmentation, and this work extends the semi-empirical shrouded wind turbine model introduced first by Foreman to incorporate a converging-diverging nozzle into the system. The analysis is based on assumptions and approximations of the conservation laws to calculate optimal power coefficients and power extraction, as well as augmentation ratios. It is revealed that the power enhancement is proportional to the mass stream rise produced by the nozzle diffuser-augmented wind turbine (NDAWT). Such mass flow rise can only be accomplished through two essential principles: the increase in the area ratios and/or by reducing the negative back pressure at the exit. The thrust coefficient for optimal power production of a conventional bare wind turbine is known to be 8/9, whereas the theoretical analysis of the NDAWT predicts an ideal thrust coefficient either lower or higher than 8/9 depending on the back pressure coefficient at which the shrouded turbine operates. Computed performance expectations demonstrate a good agreement with numerical and experimental results, and it is demonstrated that much larger power coefficients than for traditional wind turbines are achievable. Lastly, the developed model is very well suited for the preliminary design of a shrouded wind turbine where typically many trade-off studies need to be conducted inexpensively
    corecore