80 research outputs found

    Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells

    Get PDF
    Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC50 close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H2O2). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported

    Bone Marrow-Derived Progenitor Cells Augment Venous Remodeling in a Mouse Dorsal Skinfold Chamber Model

    Get PDF
    The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment

    Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation

    Full text link

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence

    Phenotypic and Functional Characterization of Mesenchymal Stem Cells from Chorionic Villi of Human Term Placenta

    Get PDF
    BACKGROUND: Bone marrow derived mesenchymal stem cells (BM-MSCs) are used extensively in transplantation but their use is associated with many problems including low abundance in BM, low overall number, decreased differentiation potential with age and the invasive isolation procedures needed to obtain BM. We report a novel method of isolating placental MSCs (pMSCs) from chorionic villi, which exhibit the phenotypic and functional characteristics that will make them an attractive source of MSCs for cell-based therapy. METHODS: A novel explant approach was used to isolate pMSCs from chorionic villi of human placentae. These pMSCs were characterized by flow cytometry and were differentiated into adipocytes, osteocytes and chondrocytes using differentiation medium as demonstrated by cytochemical staining. The gene and protein expression profiles of pMSCs were also characterized using real time polymerase chain reaction (PCR) and flow cytometry, respectively. In addition, cytokine secretion by pMSCs was also analysed using sandwich enzyme-linked immunosorbent assay (ELISA) technique. Moreover, the migration and proliferation potentials of pMSCs were also determined. RESULTS: pMSCs were isolated from fetal part of the chorionic villi and these pMSCs expressed CD44, CD90, CD105, CD146, CD166 and HLA-ABC but not CD14, CD19, CD40, CD45, CD80, CD83, CD86 and HLA-DR. In addition, these pMSCs differentiated into osteocytes, chondrocytes and adipocytes and they also expressed several adhesion molecules, chemokines/receptors, growth factor receptors and cytokines/receptors. Moreover, they secreted many cytokines (IL-1Ra, IL6, IL8, IL10, IL11 and IL15) and they were able to proliferate. Furthermore, they migrated in response to chemotactic factors including stromal cell-derived factor-1 (SDF-1), platelet derived growth factor (PDGF), hepatocyte growth factor (HGF), and monocyte chemotactic protein-1 (MCP-1). CONCLUSIONS: We devised a novel explant method of isolating pMSCs that expressed many biological factors responsible for mediating cellular processes such as migration/homing, immune modulation and angiogenesis. Therefore, we suggest that pMSCs prepared from human term placental chorionic villous explants are an attractive source of MSCs for cell therapy
    corecore