339 research outputs found

    Editorial

    Get PDF
    Jurnal komunikasi dan Penyiaran Islam merupakan sebuah tempat menyalurkan gagasan ataupun pemikiran berupa hasil penelitian ataupun konseptual yang sesuai dengan kaedah sistematika penulisan artikel jurnal dan bidang keilmuan hingga tahap publikasi ilmiah. Khabar: jurnal Komunikasi Penyiaran Islam yang terbit secara berkala, dua kali dalam satu tahun, setiap bulan Desember dan Juni. Dengan dilengkapi Open Jounal System dengan (E-ISSN 2716-0769) akses terbuka, peer review, serta indeksasi google scholar dan DOI. Kami menerima naskah penelitian yang tidak diterbitkan, berkualitas tinggi dan asli dalam bahasa Indonesia yang dihasilakan terutama dari metodologi penelitian kualitatif, kuantitatif dan campuran yang terkait dengan Dakwah dan Komunikasi Islam. Ruang lingkup Sejarah Dakwah, Metode Pengembangan Dakwah, Manajemen Pers Dakwah, kasian Dakwah Multiperspektif, Ilmu Komunikasi, Desain Efektivitas Komunikasi Islam, dll

    Editorial

    Get PDF
    Editoria

    ARED 3.0: the large and diverse AU-rich transcriptome

    Get PDF
    A comprehensive search that utilized a large set of mRNA data from human genome databases and additionally, expressed sequence tag (EST) database characterized this latest update of AU-rich elements (AREs) containing mRNA database (ARED). A large number of ARE-mRNA, as much as 4000, were recovered and include many of ARE alternative forms. This number represents as much as 5–8% of the human genes depending on the entire number of genes. The new ARED does not contain only larger and diverse number of ARE-mRNAs but additional functionality and enhanced search capabilities are given in the database website . These include class and cluster of AREs, source mRNAs, EST evidence, buildup information, retrieval of lists of genes, and integration with current and new NCBI data, such as Entrez ID and Unigene. Gene Ontology analysis shows there are significant differences in functional diversity of ARED when compared with the overall genome. Many of ARE-genes mediate regulatory processes, reactions to outside stimuli, RNA metabolism, and developmental processes particularly those of early and transient responses. The wide interest in mRNA turnover and importance of AREs in health and disease signify the compilation of ARE-genes

    ARED Organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse

    Get PDF
    ARED Organism represents the expansion of the adenylate uridylate (AU)-rich element (ARE)-containing human mRNA database into the transcriptomes of mouse and rat. As a result, we performed quantitative assessment of ARE conservation in human, mouse and rat transcripts. We found that a significant proportion (∼25%) of human genes differ in their ARE patterns from mouse and rat transcripts. ARED-Integrated, another updated and expanded version of ARED, is a compilation of ARED versions 1.0 to 3.0 and updated version 4.0 that is devoted to human mRNAs. Thus, ARED-Integrated and ARED-Organism databases, both publicly available at http://brp.kfshrc.edu.sa/ARED, offer scientists a comprehensive view of AREs in the human transcriptome and the ability to study the comparative genomics of AREs in model organisms. This ultimately will help in inferring the biological consequences of ARE variation in these key animal models as opposed to humans, particularly, in relationships to the role of RNA stability in disease

    Building sustainable digital communities: A five-pronged social-informatics research approach in Bangladesh

    Get PDF
    In a developing society, critical issues highlighted are not just about the technology, but with social factors such as culture, institutions, organizational issues, and individual identities. Understanding such factors is significant to illustrate how best to create sustainable communities using technology. Researchers at Monash University have collaborated with Oxfam International and developed a 5-year international development project known as PROTIC. This paper aims to give readers an overview of the PROTIC project and describe how the five doctoral research students are designing their research to achieve a common goal of developing sustainable digital communities in Bangladesh. The students follow different research methods in their respective projects, targeting overall long-term sustainability for the vulnerable communities identified in each of their studies. Although using five distinct research project approaches, the PROTIC project aims to use the exploratory study to make information and communication technologies (ICT) more sustainable for underserved communities. The findings from these researchers will impact on design and implementation of ICT-based socio-economic development projects undertaken by international development organizations

    UU/UA Dinucleotide Frequency Reduction in Coding Regions Results in Increased mRNA Stability and Protein Expression

    Get PDF
    UU and UA dinucleotides are rare in mammalian genes and may offer natural selection against endoribonuclease-mediated mRNA decay. This study hypothesized that reducing UU and UA (UW) dinucleotides in the mRNA-coding sequence, including the codons and the dicodon boundaries, may promote resistance to mRNA decay, thereby increasing protein production. Indeed, protein expression from UW-reduced coding regions of enhanced green fluorescent protein (EGFP), luciferase, interferon-α, and hepatitis B surface antigen (HBsAg) was higher when compared to the wild-type protein expression. The steady-state level of UW-reduced EGFP mRNA was higher and the mRNA half-life was also longer. Ectopic expression of the endoribonuclease, RNase L, did not reduce the wild type or UW-reduced mRNA. A mutant form of the mRNA decay-promoting protein, tristetraprolin (TTP/ZFP36), which has a point mutation in the zinc-finger domain (C124R), was used. The wild-type EGFP mRNA but not the UW-reduced mRNA responded to the dominant negative action of the C124R ZFP36/TTP mutant. The results indicate the efficacy of the described rational approach to formulate a general scheme for boosting recombinant protein production in mammalian cells

    Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling

    Get PDF
    BACKGROUND: KSRP is a AU-rich element (ARE) binding protein that causes decay of select sets of transcripts in different cell types. We have recently described that phosphatidylinositol 3-kinase/AKT (PI3K-AKT) activation induces stabilization and accumulation of the labile β-catenin mRNA through an impairment of KSRP function. RESULTS: Aim of this study was to identify additional KSRP targets whose stability and steady-state levels are enhanced by PI3K-AKT activation. First, through microarray analyses of the AU-rich transcriptome in pituitary αT3-1 cells, we identified 34 ARE-containing transcripts upregulated in cells expressing a constitutively active form of AKT1. In parallel, by an affinity chromatography-based technique followed by microarray analyses, 12 mRNAs target of KSRP, additional to β-catenin, were identified. Among them, seven mRNAs were upregulated in cells expressing activated AKT1. Both steady-state levels and stability of these new KSRP targets were consistently increased by either KSRP knock-down or PI3K-AKT activation. CONCLUSION: Our study identified a set of transcripts that are targets of KSRP and whose expression is increased by PI3K-AKT activation. These mRNAs encode RNA binding proteins, signaling molecules and a replication-independent histone. The increased expression of these gene products upon PI3K-AKT activation could play a role in the cellular events initiated by this signaling pathway

    Alternative polyadenylation variants of the RNA binding protein, HuR: abundance, role of AU-rich elements and auto-Regulation

    Get PDF
    The RNA-binding protein, HuR, is involved in the stabilization of AU-rich element-containing mRNAs with products that are involved in cell-cycle progression, cell differentiation and inflammation. We show that there are multiple polyadenylation variants of HuR mRNA that differ in their abundance, using both bioinformatics and experimental approaches. A polyadenylation variant with distal poly(A) signal is a rare transcript that harbors functional AU-rich elements (ARE) in the 3′UTR. A minimal 60-nt region, but not a mutant form, fused to reporter-3′UTR constructs was able to downregulate the reporter activity. The most predominant and alternatively polyadenylated mature transcript does not contain the ARE. HuR itself binds HuR mRNA, and upregulated the activity of reporter from constructs fused with ARE-isoform and the HuR ARE. Wild-type tristetraprolin (TTP), but not the zinc finger mutant TTP, competes for HuR binding and upregulation of HuR mRNA. The study shows that the HuR gene codes for several polyadenylation variants differentially regulated by AU-rich elements, and demonstrates an auto-regulatory role of HuR

    RNase L Mediates Transient Control of The Interferon Response Through Modulation of The Double-stranded RNA-Dependent Protein Kinase PKR

    Get PDF
    The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2α, eIF2α, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2α appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses
    corecore