8 research outputs found

    Symmetry Conditions for Non-reciprocal Light Propagation in Magnetic Crystals

    Full text link
    Recent studies demonstrated the violation of reciprocity in optical processes in low-symmetry magnetic crystals. In these crystals the speed of light can be different for counter-propagating beams. Correspondingly, they can show strong directional anisotropies such as direction dependent absorption also called directional dichroism[S. Bord\'acs et al., Nat. Phys. 8, 734 (2012); M. Saito et al., J. Phys. Soc. Jpn. 77, 013705 (2008)]. Based on symmetry considerations, we identify the magnetic point groups of materials which can host such directional anisotropies and also provide a list of possible candidate materials to observe these phenomena. In most of these cases, the symmetry of the crystal allows directional anisotropy not only for optical processes but also for the propagation of beams of particles and scalar waves. We also predict new types of directional optical anisotropies -- besides the optical magnetoelectric effect and the magnetochiral dichroism investigated so far -- and specify the magnetic point groups of crystals where they can emerge.Comment: Overall revisio

    Insulating improper ferroelectric domain walls as robust barrier layer capacitors

    Full text link
    We report the dielectric properties of improper ferroelectric h-ErMnO3_3. From the bulk characterisation we observe a temperature and frequency range with two distinct relaxation-like features, leading to high and even 'colossal' values for the dielectric permittivity. One feature trivially originates from the formation of a Schottky barrier at the electrode-sample interface, whereas the second one relates to an internal barrier layer capacitance (BLC). The calculated volume fraction of the internal BLC (of 8 %) is in good agreement with the observed volume fraction of insulating domain walls (DWs). While it is established that insulating DWs can give rise to high dielectric constants, studies typically focused on proper ferroelectrics where electric fields can remove the DWs. In h-ErMnO3_3, by contrast, the insulating DWs are topologically protected, facilitating operation under substantially higher electric fields. Our findings provide the basis for a conceptually new approach to engineer materials exhibiting colossal dielectric permittivities using domain walls in improper ferroelecctrics with potential applications in electroceramic capacitors.Comment: 7 pages, 4 figure

    Disorder Promotes Ferromagnetism: Rounding of the Quantum Phase Transition in Sr₁₋ₓCaₓRuO₃

    Get PDF
    The subtle interplay of randomness and quantum fluctuations at low temperatures gives rise to a plethora of unconventional phenomena in systems ranging from quantum magnets and correlated electron materials to ultracold atomic gases. Particularly strong disorder effects have been predicted to occur at zero-temperature quantum phase transitions. Here, we demonstrate that the composition-driven ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCaxRuO3 is completely destroyed by the disorder introduced via the different ionic radii of the randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map the magnetic phase diagram in the composition-temperature space. We find that the ferromagnetic phase is significantly extended by the disorder and develops a pronounced tail over a broad range of the composition x. These findings are explained by a microscopic model of smeared quantum phase transitions in itinerant magnets. Moreover, our theoretical study implies that correlated disorder is even more powerful in promoting ferromagnetism than random disorder

    Macroscopic Manifestation of Domain-wall Magnetism and Magnetoelectric Effect in a N\'eel-type Skyrmion Host

    Get PDF
    We report a magnetic state in GaV4_4Se8_8 which emerges exclusively in samples with mesoscale polar domains and not in polar mono-domain crystals. Its onset is accompanied with a sharp anomaly in the magnetic susceptibility and the magnetic torque, distinct from other anomalies observed also in polar mono-domain samples upon transitions between the cycloidal, the N\'eel-type skyrmion lattice and the ferromagnetic states. We ascribe this additional transition to the formation of magnetic textures localized at structural domain walls, where the magnetic interactions change stepwise and spin textures with different spiral planes, hosted by neighbouring domains, need to be matched. A clear anomaly in the magneto-current indicates that the domain-wall-confined magnetic states also have strong contributions to the magnetoelectric response. We expect polar domain walls to commonly host such confined magnetic edge states, especially in materials with long wavelength magnetic order

    Magnetic order and sign of the Dzyaloshinskii-Moriya interaction in 2D antiferromagnet Ba2CoGe2O7 under applied magnetic field

    No full text
    The Dzyaloshinskii-Moriya interaction (DMI), that is the antisymmetric part of the exchange coupling tensor, favors the perpendicular arrangement of magnetic moment, thus, induces canting in otherwise collinear structures. The DMI is the prerequisite for the emergence of weak ferromagnetism in antiferromagnets, but can stabilize twisted magnetic textures, such as spin spirals, soliton lattices and magnetic skyrmions. While the magnitude of the DMI determines the canting angle of adjacent spins, its sign dictates the sense of the spin rotation. Based on a focused polarized neutron diffraction (PND) study, combined with symmetry analysis, we determine the sign of the DMI in the unconventional multiferroic Ba2CoGe2O7 and reveal its detailed magnetic structure in magnetic fields applied in the tetragonal plane. As PND gives unique access to the scattering contribution from the phase-sensitive nuclear-magnetic interference, it is a valuable tool for a straightforward DMI sign determination in bulk materials and allows to disclose even very weak magnetic moments. Remarkably, the sign of the DMI could be determined from the PND measurement of a single reflection which is demonstrated to be reliable for a large range of applied magnetic field directions and values
    corecore