26 research outputs found
Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons
We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells
Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells
The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors
Factors influencing limit values for pine needle litter decomposition - a synthesis for boreal and temperate pine forest systems
We synthesized available data for decomposition of pine (Pinus) needle litter in pine forests to determine the litter chemical characteristics and climate factors that explained variation in the limit value, i.e. the level of accumulated mass loss at which the decomposition process either continues at a very low rate or possibly stops. Our data base included 56 separate studies on decomposition of pine needle litter, spanning Scots pine, lodgepole pine, Aleppo pine, stone pine and white pine, mainly incubated at the site of collection. Studies had 5 to 19 samplings, on average 10, and the decomposition was followed to a mass loss ranging from 47 to 83%, on average 67%. The periods from 3.0 to 5.4 years, on average 3.9 years, were of sufficient duration to allow estimates of limit values of decomposition. We used a linear mixed model with regression effects to relate limit values to potential explanatory variables, namely the sites’ long-term mean annual temperature (MAT) and mean annual precipitation (MAP) and to substrate-chemistry factors. Regarding the latter, we explored two models; one that included initial concentrations of water solubles, lignin, N, P, K, Ca, Mg, and Mn and one that included only lignin, N, Ca, and Mn to focus on those nutrients known to influence lignin degradation. Using backward elimination significant explanatory variables were determined. For litter decomposed in its site of origin we found the limit value to depend mainly on the initial concentration of Mn, with higher Mn concentrations resulting in higher accumulated mass loss. Thus, litter with higher Mn reached a higher limit value and left a smaller stable fraction. This is likely due to the fact that Mn is an essential component of ligninolytic enzymes important for degrading litter in the later stages of decomposition. Manganese has received little attention in decomposition studies to date. Given its significance in this synthesis, the role of Mn in influencing variation in the late stages of decomposition among ecosystems and among litters of other genera besides Pinus deserves further attentio