128 research outputs found

    Dependent Failures And Failure Propagation In Electric Power Systems

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013Biz toplam kesinti sayısı dağılımını, cascading sürecinden sonra dallanma yöntemi ve yayılma ortalamasına göre tahmin ettikAn initial number of lines outaged can lead to a cascading propagation of further outages. We estimate the amount by which line outages propagate from standard utility data that is reported to TEİAŞ. We estimate the distribution of the total number of outages after cascading from the amount of propagation and a probabilistic branching process model of the cascading.Yüksek LisansM.Sc

    Multi-physics design optimisation of a GaN-based integrated modular motor drive system

    Get PDF
    Here, a multi-physics approach is presented for the design optimisation of an integrated modular motor drive (IMMD). The system is composed of a modular permanent magnet synchronous motor (PMSM) and a GaN-based modular motor drive power stage. The multi-physics model includes motor drive inverters and DC-link capacitor bank (electrical model), stator windings and rotor magnets (electromagnetic model), heat sink (thermal model), and a geometrical model. The main purpose of the design optimisation is to obtain the highest power density possible, which is quite critical in integrated drives. Due to the integrated structure, the system has several interdependencies and parameters are selected based on those relationships. An 8kW IMMD system design is proposed from the developed optimisation tool and evaluated. The resultant system has a power density of 0.71kW/lt, drive efficiency of 98.3%, and motor efficiency of 96.6%

    Superconducting generators for large off shore wind turbines

    Get PDF
    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty of the topologies reside in using a single loop shaped stationary superconducting field winding, which eliminates the rotating transfer couplers and electric brushes or brushless exciters. Furthermore, the electromagnetic forces in the superconducting wire are also eliminated, which simplifies the design and manufacturing of the cryostat and the support structure. Among the four topologies presented, the claw pole type machine is the most promising one. The rotor of the machine composes of claw-poles made from laminated electrical sheets, the superconducting field winding and the armature winding are stationary. The machine is analysed using 3D FEA simulations and a small linear machine prototype is manufactured to verify the simulations. For large scale applications, a double-sided claw pole machine is proposed, which has balanced magnetic attraction forces in the rotor. The machine has a modular cryostat structure, which increases the availability of the machine. Thus, even if a fault occurs in the cryocoolers or in the armature coils, the rest of the machine can operate at partial load until the maintenance is performed. Moreover, it is much easier to replace the faulty parts, as full disassemble of the machine is not required, and a small on-site crane can be used. As a result, it offers operational advantages over the existing superconducting topologies. A 10 MW, 10 rpm generator design is presented, which has a diameter of 6.6 m and an axial length of 1.4 m. The total active mass of the generator is 58 tonnes, and the structural mass is 126 tonnes, which gives a total mass of 184 tonnes. There are four independent cryostats and two independent armature windings in the machine to improve modularity. The biggest advantage of the design is the significantly less superconducting wire usage compared to any other designs; 10 MW machine just needs 15 km of MgB2 wire at 30 K. Thus, it is believed that the proposed topology is a very cost effective and suitable candidate for a successful entry to the wind turbine market

    Feasibility of quasi-square-wave zero-voltage-switching bi-directional dc/dc converters with gan hemts

    Get PDF
    There are trade-offs for each power converter design which are mainly dictated by the switching component and passive component ratings. Recent power electronic devices such as Gallium Nitride (GaN) transistors can improve the application range of power converter topologies with lower conduction and switching losses. These new capabilities brought by the GaN High Electron Mobility Transistors (HEMTs) inevitably changes the feasible operation ranges of power converters. This paper investigates the feasibility of Buck and Boost based bi-directional DC/DC converter which utilizes Quasi-Square-Wave (QSW) Zero Voltage Switching (ZVS) on GaN HEMTs. The proposed converter applies a high-switching frequency at high output power to maximize the power density at the cost of high current ripple with high frequency of operation which requires a design strategy for the passive components. An inductor design methodology is performed to operate at 28 APP with a switching frequency of 450 kHz. In order to minimize the high ripple current stress on the output capacitors an interleaving is performed. Finally, the proposed bi-directional converter is operated at 5.4 kW with 5.24 kW/L or 85.9 W/in3 volumetric power density with air-forced cooling. The converter performance is verified for buck and boost modes and full load efficiencies are recorded as 97.7% and 98.7%, respectively

    Can you text what is happening? Integrating pre-trained language encoders into trajectory prediction models for autonomous driving

    Full text link
    In autonomous driving tasks, scene understanding is the first step towards predicting the future behavior of the surrounding traffic participants. Yet, how to represent a given scene and extract its features are still open research questions. In this study, we propose a novel text-based representation of traffic scenes and process it with a pre-trained language encoder. First, we show that text-based representations, combined with classical rasterized image representations, lead to descriptive scene embeddings. Second, we benchmark our predictions on the nuScenes dataset and show significant improvements compared to baselines. Third, we show in an ablation study that a joint encoder of text and rasterized images outperforms the individual encoders confirming that both representations have their complementary strengths

    Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit

    Get PDF
    The necessity for the utilization of microgrids emerges from the integration of distributed energy resources, electric vehicles, and battery storage systems into the conventional grid structure. In order to achieve a proper operation of the microgrid, the presence of a microgrid control system is crucial. The IEEE 2030.7 standard defines the microgrid control system as a key element of the microgrid that regulates every aspect of it at the point-of-interconnection with the distribution system, and autonomously manages operations such as the transitions of operating modes. In this paper, a microgrid control system is developed to achieve real-time monitoring and control through a centralized approach. The controller consists of a centralized server and advanced field units that are also developed during this work. The control functions of the centralized server ensure the proper operation during grid-connected and island modes, using the real-time data received via the advanced field unit. The developed server and the field unit constitute a complete system solution. The server is composed of control function and communication, database, and user interface modules. The microgrid control functions comprise dispatch and transition core-level functions. A rule-based core-level dispatch function guarantees the security of supply to critical loads during the islanded mode. The core-level transition function accomplishes a successful transition between the operation modes. Moreover, a communication framework and a graphical user interface are implemented. The presented system is tested through thecases based on the IEEE 2030.8 standard

    Analysis of clinical and demographic characteristics of patients presenting with renal colic in the emergency department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal colic (RC), is one of the most severe pain patterns which is most commonly diagnosed and managed in the emergency department (ED). This study is designed to evaluate the characteristics of adult patients presenting with pain and diagnosed with RC in the ED, length of stay in the ED and hospital and factors affecting these variables.</p> <p>Methods</p> <p>All consecutive adult patients who presented with side pain, flank pain, abdominal or groin pain and consequently diagnosed with urolithiasis or RC were analyzed retrospectively. Sociodemographic data, times of admission into and discharge from the ED, adjunctive complaints, results of laboratory investigations, findings on examination, treatment and drugs administered were noted.</p> <p>Results</p> <p>A total of 235 patients with a diagnostic code of urolithiasis were enrolled. Physicians were more likely to order radiological and laboratory investigations for female patients and those without hematuria in urinalysis. The peak incidence of patients diagnosed with RC (p = 0.001) was noted in August, while the winter had the lowest frequency of relevant admissions. The peak frequency was between 06:00 and 08:00. Women stayed longer in the ED (p = 0.001). Absence of hematuria in urinalysis was associated with increased length of stay (p = 0.007).</p> <p>Conclusion</p> <p>Although RC is a common ED presentation for which the emergency physician has no guidelines in terms of diagnosis and management, there is no exact pattern to guide ordering investigations. Patients with atypical presentations stay longer in the ED and are likely to undergo additional tests in management.</p

    Improving the Thermal Performance of Rotary and Linear Air-Cored Permanent Magnet Machines for Direct Drive Wind and Wave Energy Applications

    Get PDF
    Air-cored machines offer benefits in terms the elimination of magnetic attraction forces between stator and rotor. With no iron in the stator there is not a good thermal conduction path for heat generated by Joule losses in the stator winding. Results from both models and experimental tests are provided in this paper to investigate different methods of cooling air-cored windings, including natural air-cooling, direct liquid cooling and the use of heat pipes

    Separated magnet yoke for permanent magnet linear generator for marine wave energy converters

    Get PDF
    In this paper the performance of a longitudinal flux permanent magnet linear generator (PMLG) for wave energy converters (WEC) is investigated. The influence of the number of slots per pole, phase q and the number of stator's winding sections are analysed. The power output and the cogging forces in the PMLG are calculated and reviewed with respect to the above design parameters. In addition, an optimised PMLG model is designed and simulated. Three-dimensional Finite Element Method (FEM) is used for solving the combined field and circuit equations of the generator.The PRIMaRE project
    corecore