21 research outputs found

    Ultrafast electron dynamics in metals

    Get PDF
    During the last decade, significant progress has been achieved in the rapidly growing field of the dynamics of {\it hot} carriers in metals. Here we present an overview of the recent achievements in the theoretical understanding of electron dynamics in metals, and focus on the theoretical description of the inelastic lifetime of excited hot electrons. We outline theoretical formulations of the hot-electron lifetime that is originated in the inelastic scattering of the excited {\it quasiparticle} with occupied states below the Fermi level of the solid. {\it First-principles} many-body calculations are reviewed. Related work and future directions are also addressed.Comment: 17 pages, two columns, 13 figures, to appear in ChemPhysChe

    Calculated lifetimes of hot electrons in aluminum and copper using a plane-wave basis set

    Get PDF
    We report about the lifetimes of hot electrons in crystalline aluminum and copper. For aluminum the results agree quantitatively with the experimental results. For copper we get good agreement for quasiparticle energies in the (110) direction above 2 eV which shows that the lifetimes for quasiparticle states above 2 eV are determined by sp bands, explaining the puzzling fact that simple Fermi liquid theory describes Cu in this direction quite well. The calculations were performed within the shielded interaction approximation using a plane-wave basis expansion for the wave functions. We show that for Cu this basis leads to equally good results as the more demanding linearized augmented plane-wave basis

    Dynamics of Excited Electrons in Copper: Role of Auger Electrons

    Full text link
    Within a theoretical model based on the Boltzmann equation, we analyze in detail the structure of the unusual peak recently observed in the relaxation time in Cu. In particular, we discuss the role of Auger electrons in the electron dynamics and its dependence on the d-hole lifetime, the optical transition matrix elements and the laser pulse duration. We find that the Auger contribution to the distribution is very sensitive to both the d-hole lifetime tau_h and the laser pulse duration tau_l and can be expressed as a monotonic function of tau_l/tau_h. We have found that for a given tau_h, the Auger contribution is significantly smaller for a short pulse duration than for a longer one. We show that the relaxation time at the peak depends linearly on the d-hole lifetime, but interestingly not on the amount of Auger electrons generated. We provide a simple expression for the relaxation time of excited electrons which shows that its shape can be understood by a phase space argument and its amplitude is governed by the d-hole lifetime. We also find that the height of the peak depends on both the ratio of the optical transition matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured for polycrystalline Cu.Comment: 6 pages, 6 figure

    Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale

    Full text link
    Experiments determining the lifetime of excited electrons in crystalline copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a model which explains these states as transient excitonic states in metals. The physical background of transient excitons is the finite time a system needs to react to an external perturbation, in other words, the time which is needed to build up a polarization cloud. This process can be probed with modern ultra-short laser pulses. We calculate the time-dependent density-response function within the jellium model and for real Cu. From this knowledge it is possible within linear response theory to calculate the time needed to screen a positive charge distribution and -- on top of this -- to determine excitonic binding energies. Our results lead to the interpretation of the experimentally detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue 2

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Hole dynamics in noble metals

    Full text link
    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, the small overlap between d- and sp-states below the Fermi level increases the d-hole lifetime. The impact of d-hole dynamics on electron-hole correlation effects, which are of relevance in the analysis of time-resolved two-photon photoemission experiments, is also addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Anomalous Quasiparticle Lifetime in Graphite: Band Structure Effects

    Get PDF
    We report ab initio calculation of quasiparticle lifetimes in graphite, as determined from the imaginary part of the self-energy operator within the GW aproximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above the Fermi level presents significant deviations from the quadratic behavior naively expected from Fermi liquid theory. The deviations are explained in terms of the unique features of the band structure of this material. We also discuss the experimental results from different groups and make some predictions for future experiments.Comment: 4 pages, 4 figures, submitted PR

    Response theory for time-resolved second-harmonic generation and two-photon photoemission

    Full text link
    A unified response theory for the time-resolved nonlinear light generation and two-photon photoemission (2PPE) from metal surfaces is presented. The theory allows to describe the dependence of the nonlinear optical response and the photoelectron yield, respectively, on the time dependence of the exciting light field. Quantum-mechanical interference effects affect the results significantly. Contributions to 2PPE due to the optical nonlinearity of the surface region are derived and shown to be relevant close to a plasmon resonance. The interplay between pulse shape, relaxation times of excited electrons, and band structure is analyzed directly in the time domain. While our theory works for arbitrary pulse shapes, we mainly focus on the case of two pulses of the same mean frequency. Difficulties in extracting relaxation rates from pump-probe experiments are discussed, for example due to the effect of detuning of intermediate states on the interference. The theory also allows to determine the range of validity of the optical Bloch equations and of semiclassical rate equations, respectively. Finally, we discuss how collective plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe

    Lifetime of surface states in optically excited Al, Cu, and Ag

    No full text
    In this Letter we report about ab initio calculations of the lifetime of excited electrons in Surface states of Al, Cu, and Ag. We show that at the ab initio level the decay of surface states is very much similar to that of bulk states, because in both cases it is the density of the final bulk states which matters. This shows by way of example that most probably the popular jellium-like models will fail in predicting accurate lifetimes and that the ab initio treatment of surface states is a must

    The determination of the lifetime of hot electrons in metals by time-resolved two-photon photoemission: the role of transport effects, virtual states, and transient excitons

    No full text
    Experience has shown that theoretically determined lifetimes of bulk states of hot electrons in real metals agree quantitatively with the experimental ones, if theory fully takes into account the crystal structure and many-body effects of the investigated metal, i.e., if the Dyson equation is solved at the ab initio level and the effective electron– electron interaction is determined beyond the plasmon-pole approximation. Therefore the hitherto invoked transport effect [Knoesel et al.: Phys. Rev. B 57, 12 812 (1998)] does not seem to exist. In this paper we show that likewise neither virtual states [Hertel: et al. Phys. Rev. Lett. 76, 535 (1996)] nor damped band-gap states [Ogawa: et al.: Phys. Rev. B 55, 10 869 (1997)] exist, but that the hitherto unexplained d-band catastrophe in Cu [Cu(111), Cu(110)] can be naturally resolved by the concept of the transient exciton. This is a new quasiparticle in metals, which owes its existence to the dynamical character of dielectric screening at the microscopic level. This means that excitons, though they do not exist under stationary conditions, can be observed under ultrafast experimental conditions
    corecore