212 research outputs found

    Distillability and positivity of partial transposes in general quantum field systems

    Full text link
    Criteria for distillability, and the property of having a positive partial transpose, are introduced for states of general bipartite quantum systems. The framework is sufficiently general to include systems with an infinite number of degrees of freedom, including quantum fields. We show that a large number of states in relativistic quantum field theory, including the vacuum state and thermal equilibrium states, are distillable over subsystems separated by arbitrary spacelike distances. These results apply to any quantum field model. It will also be shown that these results can be generalized to quantum fields in curved spacetime, leading to the conclusion that there is a large number of quantum field states which are distillable over subsystems separated by an event horizon.Comment: 25 pages, 2 figures. v2: Typos removed, references and comments added. v3: Expanded introduction and reference list. To appear in Rev. Math. Phy

    Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence

    Full text link
    We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. This will lead us to show that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/WW states of continuous variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the WW states of three qubits. We finally consider the action of decoherence on tripartite entangled Gaussian states, studying the decay of the residual contangle. The GHZ/WW states are shown to be maximally robust under both losses and thermal noise.Comment: 20 pages, 5 figures. (v2) References updated, published versio

    On the Phase Covariant Quantum Cloning

    Get PDF
    It is known that in phase covariant quantum cloning the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite zz component of spin. It is shown that once we know the zz component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states which give rise to separable density matrix for the outputs.Comment: Revtex4, 6 pages, 5 eps figure

    Notions of Infinity in Quantum Physics

    Full text link
    In this article we will review some notions of infiniteness that appear in Hilbert space operators and operator algebras. These include proper infiniteness, Murray von Neumann's classification into type I and type III factors and the class of F{/o} lner C*-algebras that capture some aspects of amenability. We will also mention how these notions reappear in the description of certain mathematical aspects of quantum mechanics, quantum field theory and the theory of superselection sectors. We also show that the algebra of the canonical anti-commutation relations (CAR-algebra) is in the class of F{/o} lner C*-algebras.Comment: 11 page

    Quantum cloning machines for equatorial qubits

    Full text link
    Quantum cloning machines for equatorial qubits are studied. For the case of 1 to 2 phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal 1 to M phase-covariant quantum cloning transformations are given.Comment: Revtex, 9 page

    Strong subadditivity inequality for quantum entropies and four-particle entanglement

    Get PDF
    Strong subadditivity inequality for a three-particle composite system is an important inequality in quantum information theory which can be studied via a four-particle entangled state. We use two three-level atoms in Λ\Lambda configuration interacting with a two-mode cavity and the Raman adiabatic passage technique for the production of the four-particle entangled state. Using this four-particle entanglement, we study for the first time various aspects of the strong subadditivity inequality.Comment: 5 pages, 3 figures, RevTeX4, submitted to PR

    Tema Con Variazioni: Quantum Channel Capacity

    Full text link
    Channel capacity describes the size of the nearly ideal channels, which can be obtained from many uses of a given channel, using an optimal error correcting code. In this paper we collect and compare minor and major variations in the mathematically precise statements of this idea which have been put forward in the literature. We show that all the variations considered lead to equivalent capacity definitions. In particular, it makes no difference whether one requires mean or maximal errors to go to zero, and it makes no difference whether errors are required to vanish for any sequence of block sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl

    Truncated su(2) moment problem for spin and polarization states

    Full text link
    We address the problem whether a given set of expectation values is compatible with the first and second moments of the generic spin operators of a system with total spin j. Those operators appear as the Stokes operator in quantum optics, as well as the total angular momentum operators in the atomic ensemble literature. We link this problem to a particular extension problem for bipartite qubit states; this problem is closely related to the symmetric extension problem that has recently drawn much attention in different contexts of the quantum information literature. We are able to provide operational, approximate solutions for every large spin numbers, and in fact the solution becomes exact in the limiting case of infinite spin numbers. Solutions for low spin numbers are formulated in terms of a hyperplane characterization, similar to entanglement witnesses, that can be efficiently solved with semidefinite programming.Comment: 18 pages, 1 figur

    Causal structures and causal boundaries

    Full text link
    We give an up-to-date perspective with a general overview of the theory of causal properties, the derived causal structures, their classification and applications, and the definition and construction of causal boundaries and of causal symmetries, mostly for Lorentzian manifolds but also in more abstract settings.Comment: Final version. To appear in Classical and Quantum Gravit
    corecore