75 research outputs found

    Epidemiology and trend of cancers in the province of Kerman: Southeast of Iran

    Get PDF
    Background: According to increase in elderly populations, and change in lifestyle and cancer-causing behavior, the global burden of cancer is increasing. For prevention and control of disease, knowledge of population statistics of cancers and their trends is essential. This study aimed to investigate the epidemiology and trends of cancer in the province of Kerman: southeast of Iran. Materials and Methods: This analytical and cross-sectional study was carried out based on cancer registry data at the Disease Management Center of the Health Ministry from 2004 to 2009 in the province of Kerman in Iran. Common cancers were defined as the number of reported cases and standardized incidence rates. To compute the annual percentage change (APC), joinpoint 4.1.1.1 software was applied. Results: Of 10,595 registered cases, 45.3 (4802 cases) were in women and 56.7 (5,793 cases) occurred in men. The standardized incidence rates for both females and males were increasing during the six years studied. The most common cancers in both sexes during six years of studied were skin (13.4), breast (9.35), bladder (7.8), stomach (7.45), leukemia (7.05), colorectal(5.57), lung(4.92), trachea(3.51) and prostate(2.48). Conclusions: Our findings revealed that the cancer incidence is demonstrating increasing trends in both sexes in the province of Kerman. This may be because of changes in lifestyle, increasing exposure to risk factors for cancer and increase of life expectancy. If this is the case, increasing public awareness of cancer risk factors is a high priority, together with introduction of large-scale screening techniques

    A Rapid, Strong, and Convergent Genetic Response to Urban Habitat Fragmentation in Four Divergent and Widespread Vertebrates

    Get PDF
    Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding.We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation.Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix

    Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement

    Get PDF
    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [FST/(1−FST) and F′ST/(1−F′ST)] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as FST/(1−FST). However, using partial Mantel tests, AICc calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species

    Genetic analysis of scattered populations of the Indian eri silkworm, Samia cynthia ricini Donovan: Differentiation of subpopulations

    Get PDF
    Deforestation and exploitation has led to the fragmentation of habitats and scattering of populations of the economically important eri silkworm, Samia cynthia ricini, in north-east India. Genetic analysis of 15 eri populations, using ISSR markers, showed 98% inter-population, and 23% to 58% intra-population polymorphism. Nei’s genetic distance between populations increased significantly with altitude (R2 = 0.71) and geographic distance (R2 = 0.78). On the dendrogram, the lower and upper Assam populations were clustered separately, with intermediate grouping of those from Barpathar and Chuchuyimlang, consistent with geographical distribution. The Nei’s gene diversity index was 0.350 in total populations and 0.121 in subpopulations. The genetic differentiation estimate (Gst) was 0.276 among scattered populations. Neutrality tests showed deviation of 118 loci from Hardy-Weinberg equilibrium. The number of loci that deviated from neutrality increased with altitude (R2 = 0.63). Test of linkage disequilibrium showed greater contribution of variance among eri subpopulations to total variance. D’2IS exceeded D’2ST, showed significant contribution of random genetic drift to the increase in variance of disequilibrium in subpopulations. In the Lakhimpur population, the peripheral part was separated from the core by a genetic distance of 0.260. Patchy habitats promoted low genetic variability, high linkage disequilibrium and colonization by new subpopulations. Increased gene flow and habitat-area expansion are required to maintain higher genetic variability and conservation of the original S. c. ricini gene pool

    Species History Masks the Effects of Human-Induced Range Loss – Unexpected Genetic Diversity in the Endangered Giant Mayfly Palingenia longicauda

    Get PDF
    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic diversity and its significance for future potential reintroduction of the long-tailed mayfly Palingenia longicauda (Olivier), which experienced approximately 98% range loss during the past century. Analysis of 936 bp of mitochondrial DNA of 245 extant specimens across the current range revealed a surprisingly large number of haplotypes (87), and a high level of haplotype diversity (). In contrast, historic specimens (6) from the lost range (Rhine catchment) were not differentiated from the extant Rába population (, ), despite considerable geographic distance separating the two rivers. These observations can be explained by an overlap of the current with the historic (Pleistocene) refugia of the species. Most likely, the massive recent range loss mainly affected the range which was occupied by rapid post-glacial dispersal. We conclude that massive range losses do not necessarily coincide with genetic impoverishment and that a species' history must be considered when estimating loss of genetic diversity. The assessment of spatial genetic structures and prior phylogeographic information seems essential to conserve once widespread species

    Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps

    Get PDF
    In a simulation study of genotypes conducted over 100 generations for more than 1600 butterfly’s individuals, we evaluate how the increase of anthropogenic fragmentation and reduction of habitat size along urbanisation gradients (from 7% to 59% of impervious land cover) influences genetic diversity and population persistence in butterfly species. We show that in areas characterised by a high urbanisation rate (> 56% impervious land cover), a large decrease of both genetic diversity (loss of 60-80% of initial observed heterozygosity) and population size (loss of 70-90% of individuals) is observed over time. This is confirmed by empirical data available for the mobile butterfly species Pieris rapae in a sub-part of the study area. Comparing simulated data for P. rapae with its normal dispersal ability and with a reduced dispersal ability, we also show that a higher dispersal ability can be an advantage to survive in an urban or highly fragmented environment. The results obtained here suggest that it is of high importance to account for population persistence, and confirm that it is crucial to maintain habitat size and connectivity in the context of land-use planning
    corecore