93 research outputs found

    Graph Sampling-based Meta-Learning for Molecular Property Prediction

    Full text link
    Molecular property is usually observed with a limited number of samples, and researchers have considered property prediction as a few-shot problem. One important fact that has been ignored by prior works is that each molecule can be recorded with several different properties simultaneously. To effectively utilize many-to-many correlations of molecules and properties, we propose a Graph Sampling-based Meta-learning (GS-Meta) framework for few-shot molecular property prediction. First, we construct a Molecule-Property relation Graph (MPG): molecule and properties are nodes, while property labels decide edges. Then, to utilize the topological information of MPG, we reformulate an episode in meta-learning as a subgraph of the MPG, containing a target property node, molecule nodes, and auxiliary property nodes. Third, as episodes in the form of subgraphs are no longer independent of each other, we propose to schedule the subgraph sampling process with a contrastive loss function, which considers the consistency and discrimination of subgraphs. Extensive experiments on 5 commonly-used benchmarks show GS-Meta consistently outperforms state-of-the-art methods by 5.71%-6.93% in ROC-AUC and verify the effectiveness of each proposed module. Our code is available at https://github.com/HICAI-ZJU/GS-Meta.Comment: Accepted by IJCAI 202

    Tree ring pattern of roots exhumed by soil erosion

    Get PDF
    Mountains are subject to uplift and erosion. Human interference with the landscape by intensive agriculture, construction works, and tourism contributes to the removal of soil. We measured erosion rate by root exposure dating. Results of a pilot study of Shen Men Mt. at Tianshui and Kong Tong Mt. at Pingliang, Gansu province of China are reported here. New exhumation markers are introduced, separating aboveground features from mechanical stress-induced features. Change from root texture to stem texture, as defined by ring width and latewood width changes, reaction wood, distorted symmetry, simple and repeated wounds, open and closed wounds, abraded wound, onlap and offlap pattern of wound-affected growth increments, and simple and multiple discolouration by phenolic staining are illustrated and described here

    Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings

    Get PDF
    Investigations of climate-growth interactions can shed light on the response of forest growth to climate change and the dendroclimatic reconstructions. However, most existing studies in the climatically important Tibetan Plateau (TP) and surrouding regions focus on linear growth responses to environmental variation. Herein we investigated both the linear and the nonlinear climate-growth interactions for 152 tree-ring chronologies in the TP and vicinity. Weintroduced the boosted regression tree (BRT) technique to study the nonlinear climate-growth relationships by pooling several sites with similar climate-growth relationships to mitigate potential biases due to the shortness of the instrumental records. Across most of the TP and surroundings, tree growth is stressed by drought. The warming induced drought has been evidenced by the strong interactions between temperature and precipitation in the BRT analyses. The drought stress on forest growth is particularly conspicuous for a hydrological year over much of the Northern TP and surroundings. The BRT analyses indicate the compensation effect of moisture prior to the growing season for the moisture deficit in the early growing season in May to July, when most of the ring-width formation occurs.Peer reviewe

    An increase in the biogenic aerosol concentration as a contributing factor to the recent wetting trend in Tibetan Plateau

    Get PDF
    A significant wetting trend since the early 1980s in Tibetan Plateau (TP) is most conspicuous in central and eastern Asia as shown in the instrumental data and the long-term moisture sensitive tree rings. We found that anomalies in the large-scale oceanic and atmospheric circulations do not play a significant role on the wetting trend in TP. Meanwhile, the weak correlation between local temperature and precipitation suggests that the temperature-induced enhancement of the local water cycle cannot fully explain the wetting trend either. This may indicate the presence of nonlinear processes between local temperature and precipitation. We hypothesize that the current warming may enhance the emissions of the biogenic volatile organic compounds (BVOC) that can increase the secondary organic aerosols (SOA), contributing to the precipitation increase. The wetting trend can increase the vegetation cover and cause a positive feedback on the BVOC emissions. Our simulations indicate a significant contribution of increased BVOC emissions to the regional organic aerosol mass and the simulated increase in BVOC emissions is significantly correlated with the wetting trend in TP.Peer reviewe
    • …
    corecore