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Abstract
Investigations of climate–growth interactions can shed light on the response of forest growth to
climate change and the dendroclimatic reconstructions. However,most existing studies in the
climatically important Tibetan Plateau (TP) and surrouding regions focus on linear growth responses
to environmental variation.Hereinwe investigated both the linear and the nonlinear climate–growth
interactions for 152 tree-ring chronologies in the TP and vicinity.We introduced the boosted
regression tree (BRT) technique to study the nonlinear climate–growth relationships by pooling
several sites with similar climate–growth relationships tomitigate potential biases due to the shortness
of the instrumental records. Acrossmost of the TP and surroundings, tree growth is stressed by
drought. Thewarming induced drought has been evidenced by the strong interactions between
temperature and precipitation in the BRT analyses. The drought stress on forest growth is particularly
conspicuous for a hydrological year overmuch of theNorthern TP and surroundings. The BRT
analyses indicate the compensation effect ofmoisture prior to the growing season for themoisture
deficit in the early growing season inMay to July, whenmost of the ring-width formation occurs.

1. Introduction

The heating and blocking of the world's highest
Tibetan Plateau (TP) has a crucial role in modulating
the Asian climate, such as the Asian summermonsoon
(Broccoli andManabe 1992,Wu et al 2007). Forests in
TP and surroundings are of particular importance in
the context of the on-going climate change as the
vegetation can rapidly modulate the heating effect of
TP by modulating its albedo (Betts 2000) and evapo-
transpiration (Swann et al 2010). Additionally, forest
growth in TP can strongly influence the agro-
economic livelihood of the regional populations. This
highlights the significances of investigations on the
interactions between climate and forest growth,
including possible nonlinear responses, which can

shed light on the impact of future climate change on
the vegetation. The modifications in forest productiv-
ity and the impacts of climate are imprinted in the
annual growth of tree rings. Thus, tree-ring based
climate–growth relationships (Fritts 1976, Cook and
Pederson 2011) can shed light on the response of forest
growth to climate change (Foley et al 2003, Andreu-
Hayles et al 2011) and provide the basis for tree-ring
based reconstructions (Fritts 1976, Jones et al 2009,
Frank et al 2010).

Although several investigations have been con-
ducted on the tree-ring based climate–growth rela-
tionships in the TP and surrounding areas (Yuan
et al 2003, Zhang et al 2003, Sheppard et al 2004, Shao
et al 2005, Liu et al 2006, Esper et al 2007, Li et al 2008,
Liang et al 2008, Cook et al 2010, Gou et al 2013, Yang
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et al 2014), these studies were generally limited to a
moderate number of sites. Thus a comprehensive
investigation of the climate–growth relationships in
the region is still needed. In addition, the previous stu-
dies generally identify the climate determinants for
tree growth by checking the climate–growth relation-
ships in a few months or seasons. This study attempts
to investigate the climate determinants by checking
the climate–growth relationships for all possible com-
binations of the monthly climate variables of pre-
cipitation and temperature from the previous to
current growing seasons, i.e. 666 climate variables. We
found tree rings in much of the TP and surroundings
showing the highest correlations with moisture of a
hydrological year (detailed below). This indicates a
nonlinearity in climate–growth relationships caused
by the interactions between different climate variables.
For example, abundant moisture in the early growing
season can supply moisture during the late growing
season to facilitate tree growth evenwhen themoisture
level is low late in the season (Fang et al 2012b). Thus,
our study paid special attention to the nonlinearity of
the climate–growth relationships for tree rings in
responses to moisture of a hydrological year, which is
distinguished fromprevious studies.

The nonlinearity in climate–growth relationships
in dendroclimatology have been investigated using
machine learning (ML) methods, such as the artificial
neural network (ANN) analyses (Woodhouse 1999,
Zhang et al 2000, Moffat et al 2010, Fang et al 2012b).
These ML methods are black-box methods and are
difficult to statistically assess the relative contribution
of each variable. The boosted regression trees (BRTs)
technique, a modern ML method, is an advanced
regression method in which the simple regression
trees are fitted in a forward, stage-wise regression
model (boosting) (Friedman 2001, Elith et al 2008). In

BRT, the regression trees are built via recursive binary
splits and then the boosting adds a new tree to each
step to fit the regression residuals from earlier trees
and minimize the modeling deviance (Hastie
et al 2001). This novel non-parametric ensemble
method combines the advantages of both conven-
tional statistical and ML methods and can inter-
pretably explore nonlinear climate–growth
relationships, the interactions between climate vari-
ables and the relative contribution of each variables
(Elith et al 2008, Leathwick et al 2008). The BRT
method has been widely used to detect nonlinearity in
ecological systems (Salonen et al 2012, Zhao
et al 2012). However, to the best of our knowledge, this
technique has not been applied to dendroclimatic stu-
dies. The focuses of this study are to (1) find the key
climate determinant of tree growth in TP and the sur-
rounding regions, (2) explore the nonlinearity in cli-
mate–growth relationships for tree rings showing
most conspicuous responses to moisture of a hydro-
logical year, and (3) evaluate the efficiency of the BRT
technique in dendroclimatic studies.

2.Data andmethods

2.1. Tree-ring and climate data
The TP covers an area of 2 500 000 km2 in central and
Eastern Asia with an average elevation of more than
4500 m. The elevations increase sharply from the
Southern rim of the TP to the Himalaya Mountains
and the interior of the TP (figure 1). Most of the TP is
characterized by a highland continental climate with a
long, dry winter, a cool, wet summer and a large
diurnal range of temperatures (figure 2). The growing
season starts inMay along the Southern rim of the TP,
across most of the Eastern TP, and also the

Figure 1.Map of the tree-ring chronologies (red symbols) in Tibetan Plateau and vicinity. Location of the study region inAsia is
indicated by yellow rectangle in the top left.
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neighboring regions East and North of the TP. The
boundary between annual mean temperatures that are
above and below zero mirrors the boundary of the TP
(figure 2). It is relatively wet over the Southern and
Eastern rims of the TP and dry over the Northern and
Western TP and neighboring regions. Spring precipi-
tation makes up a larger portion of the annual
precipitation in the Northwestern TP (more than 1/4)
than in the Southeastern TP (less than 1/5) (figure 2).
The low-lying regions in Southeastern TP are

dominated by tropical and subtropical broadleaf
forests. Temperate broadleaf and mixed forests are
found on the Southern slope of the Himalaya Moun-
tains. Coniferous forests are seen in Eastern part of the
TP, particularly the river valleys, and the surrounding
mountain ranges (e.g., the Tianshan Mountains)
(figure 1).

We compiled a network of 152 tree-ring chron-
ologies in the TP and the surrounding regions from
the International Tree RingData Bank (ITRDB; http://
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www.ngdc.noaa.gov/paleo/ftp-treering.html), the
Chinese Tree Ring Data Center (CTRDC; http://ctrdb.
ibcas.ac.cn/index.asp) and additional sources
(figure 1, and table S1 in the supplementary data,
available at stacks.iop.org/ERL/10/034010/mmedia).
Among them, 55 chronologies are from China to the
Eastern and Northern TP and most of the remainders
are from Southern Himalaya. The mean length of the
tree-ring chronologies is 455 years. Most of the tree-
ring chronologies span from 300 to 400 year (figure
S1). Themajority of the tree-ring chronologies is from
the coniferous species such as Picea (46 chronologies)
and Juniperus (32). Most of the tree-ring sites are loca-
ted along the Southern and Eastern rims of the TP,
where sufficient heat and moisture allow old-growth
forests to grow (figure 1 and table S1). A limited num-
ber of tree-ring samples are available from the cold
and dry interior TP. Only few tree ring samples were
taken from the humid and hot regions, such as the
low-lying areas of the Southeastern rim of the Hima-
layanMountains.

Only raw tree-ringmeasurements were available at
several sites, such as those in the ITRDB; these were
treated by fitting an age-related growth curve with a
cubic smoothing spline with a 50% cutoff at approxi-
mately 67% of themean segment length to remove the
growth trends. The tree-ring chronologies were
indexed as ratios between raw measurements and the
fitted growth values, whichwere averaged to produce a
chronology using a robust mean methodology with
the programARSTAN (Cook 1985). The precipitation
and temperature data were taken from the 0.5° × 0.5°
gridded CRU TS3.1 dataset, which covers the period
from 1901 to 2009 (Mitchell and Jones 2005).We only
used precipitation and temperature data since 1950,
which is when the most of instrumental records
became available (Cook et al 2010).

2.2. Correlation and response analyses
Linear climate–growth relationships for TP and sur-
roundings can be detected using correlation and
response functions. The multi-collinearity amongst
monthly climatic parameters was reduced by extract-
ing their principal components (PCs) in the response
function analysis (Fritts 1976). The eigenvectors with
relatively low values calculated from the monthly
climate variables are excluded for the response ana-
lyses. The relationships between tree rings and the PCs
of the monthly variables were back transformed to
relationships with the monthly climate variables, i.e.
the coefficient of response function analyses. The
response function analysis was performed using the
programDendroClim2002 (Biondi andWaikul 2004).
This program evaluates the significance of the correla-
tion and response functions using a bootstrap proce-
dure. Because climate of both the previous and current
years can influence tree growth, we used the precipita-
tion and temperature from the start of previous

growing season (the previous May) to the end of the
current growing season (the current October). The
monthly correlation valueswere subjected to hierarch-
ical clustering analysis (Ward 1963) to identify group-
ings of climate–growth relationships. For the grouping
analysis, the variables for the grouping refer to
individual tree-ring sites and the observations are the
monthly correlation values.

In addition, we also calculated correlations
between tree rings and all combinations of monthly
variables from previous May to current October (666
variables) to identify the key climate determinant for
regional tree growth. We paid special attention to the
tree rings with strongest responses to themoisture of a
hydrological year if the highest climate–growth corre-
lation found for a period of 11, 12 or 13 months. This
is because a hydrological year may not exactly start at
the beginning of amonth and thusmay includemoist-
ure conditions from adjacent months. Seven sites
showing the second highest correlations (less lower
than the highest correlation for 0.05) with the moist-
ure of a hydrological year were also considered for
these analyses.

2.3. BRTs technique
We applied the BRT method to investigate the
nonlinearities only for those sites that have the highest
correlations with themoisture of a hydrological year as
tree rings in such sites tend to show strong nonlinearity
in climate–growth relationships due to the interac-
tions among climate variables. Although the responses
of tree growth to moisture of a hydrological year are
observed over much of TP and the surroundings, this
study only showed BRT analyses for themarginal areas
of Northeastern TP, where the drought stress of a
hydrological year is most conspicuous (detailed
below). The application to dendroclimatology is
composed of algorithms for the regression trees
representing the climate–growth relationships and the
boosting that adaptively combines the simple regres-
sion trees to improve the predictive performance. The
BRT analyses were implemented in R version 2.15.2
(Team 2008) using the GBM (DISMO) package 1.6-
3.1 (Elith et al 2008, Ridgeway 2010). The number of
trees (nt) is determined by iteratively increasing the
number until a minimum predictive deviance is
reached (herein approximately 8000). The optimized
parameters were determined using the ten-fold cross-
validation method, which tested the model on the
withheld portion of the data using the Gaussian
response function (Elith et al 2008, Ridgeway 2010).
To increase the model accuracy, randomness is
included using a bagging fraction of 0.5. The max-
imum level of interaction is determined by the tree
complexity (tc), with higher values indicating a higher
maximum limit of interactions, which is set to 5
herein. The learning rate (lr), which determines the
contribution of each tree to the model, is set to 0.005.
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The relative influence of the climate variables on tree-
growth in the BRT is averaged from all the trees based
on the numbers of binary splitting and squared
improvements to the model of each splitting (Fried-
man 2001). The marginal effects of the individual
climate variables are determined using partial depen-
dence functions by setting the average effects of the
other variable. However, these partial responses can be
biased when strong interactions between climate
variables exist (Friedman 2001). The interaction
between any possible pair of climate variables is
quantified by forming predictions of the predictors at
fixed intervals within their ranges with the other
predictors at their respectivemeans (Elith et al 2008).

One major difficulty for this application of the
BRTmethod in dendroclimatic analysis is the short (a
few decades) overlap period between tree rings and cli-
mate data. The size of the samples has the strongest
influence on the predictive performance for the BRT
analyses (Elith et al 2008). We attempted to mitigate
the potential biase due to the brevity of the samples by
performing the BRT analysis on a dataset pooled from
different sites. However, as spatial autocorrelation
between the tree-ring chronologies can occur for
neighboring sites, we only select tree rings from the
sites with similar climate–growth relationships but
relatively different growth variations from remote
areas. For the marginal areas of Northeastern TP, we
divided the tree-ring chronologies into three groups
based upon their proximity to the three provincial
capital cities, which are relatively far away from each
other. These three regional datasets have low spatial
autocorrelation and provide a total sample size of 194
years. The tree-ring indices of the three regions are
again normalized by dividing its mean to generate the
dimensionless indices with the mean of 1. We addi-
tionally conducted the BRT analyses for individual
dataset to examine whether the pooled dataset can
reflect the key features of each dataset.

On the other hand, controlling the number of pre-
dictors can simplify the BRT model and improve the
predictive performance (Elith et al 2008), particularly
when the sample size is small. As revealed in the pre-
vious monitoring studies in marginal areas of North-
eastern TP (Gou et al 2013), the ring-width formation
generally occurs in the early growing season fromMay
to July and the cell wall thickening occurs in the late
growing season from August to October. We thus set
the early growing season for ring-width formation
from May to July and the late and non-growing sea-
sons with limited ring-width formation from the pre-
vious August to the current April. Accordingly, our
study uses six predictors to model tree growth: the
temperature and precipitation of the previous early
growing season (previous May to July), the late and
non-growing seasons (previous August to current
April) and the current early growing season (current
May to July).

3. Results

3.1. Linear climate–growth relationships
In Northeastern TP, significantly negative correlations
and responses are found between tree growth and
temperatures of the previousMay and the current June
and August. Positive correlations are found between
tree growth and precipitation in the current spring
(May–June). This indicates a drought-stressed pattern
in the previous and current growing seasons in North-
eastern TP (figure 3 and table 1), which is also
observed over its marginal areas. Similar drought-
stressed growth patterns are observed in the Tianshan
Mountain and Southwestern TP (figure 3 and table 1),
except for that the negative relationships with tem-
perature in the non-growing season are less significant.
In the Southeastern TP, we observed positive correla-
tions between tree growth and temperatures in the
previous and current growing seasons. In Northern
India, negative correlations with temperature and
positive correlations with precipitation are only found
during the current growing season. The climate–
growth responses in Nepal and Bhutan did not have
consistent patterns. We therefore plotted the indivi-
dual climate–growth relations for each site instead of
calculating the regional mean climate–growth rela-
tionships (figure S2). Most of the sites in Nepal and
Bhutan have the general negative correlation with
precipitation.

We found tree rings from 48 sites showing highest
correlations with the moisture of a hydrological year.
Among these chronologies, 46 chronologies are loca-
ted in the cold and arid regions of the Northeastern TP
(7 sites), the marginal areas of Northeastern TP (11),
the Tianshan Mountains (10) and the Southwestern
TP (18) (figure 4 and table S2). The strongest respon-
ses for hydrological years were typically observed for
seasons starting in previous August (table S2).

3.2. Nonlinear climate–growth relationships
In the BRT analyses, we found that only the chron-
ologies on the marginal areas of Northeastern TP have
the highest responses to the moisture of a hydrological
year. However, 37 tree-ring chronologies from other
regions showing highest linear correlations with
moisture of a hydrological year only have moderately
high nonlinear correlations. We thus only apply the
BRT analyses for tree rings on the marginal areas of
Northeastern TP, where the responses tomoisture of a
hydrological years are observed in both the linear and
nonlinear analyses. Partitioning the precipitation
influences on growth into late and non-growing
seasons (previous August–current April), early grow-
ing season (current May–July), and previous early
growing season (previous May–July) revealed the
strongest responses from the late and non-growing
seasons (39.9% of the variance) and current early
growing season (38.3%) (figure 5). The fitted growth
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Figure 3.The (gray line) correlations andmean values of the (dark) correlations and (red) responses between regional tree-growth
and the temperature and precipitation frompreviousMay to current September. Themonthlymean correlations that have been
generated frommore than half of the significant correlations were considered significant andwere indicated by the circles. The tree-
ring chronologies used to generate the regionalmean chronology indices are shown in table S2.

Table 1.Classification the tree-rings sites with similar climate–growth correlations and responses. The codes are shown in table S1.

Region Sub-region Sites Sites with different responses

Northeastern TP and

vicinity

Northeastern TP DELINH,DULAJP-SHENJP-DUSHJP,

WULANJ, DEZQIN-GOUQIN

QUMAJP-ZHIDJP

Chinese Loess

Plateau

XLM002-XLM003-XLM004-XLM005,

SYKRWL-BSIRWL,GANNAN,

SONGMI, ZHANGX,KONGTO,

LAZIKO

SANGTS, XIAOLO, ANGRWL-

LENRWL-ZHARWL

Tianshan and South-

western TP

Tianshan MIQAPS-MIQBPS, TIANPS-BAIRWL,

XIARWL-SHIRWL, KUERPS-

QIARWL, RUS152e-RUS152i-RUS152l-

RUS152n-RUS152t-RUS152w-

RUS152x, RUS150e-RUS150i-RUS150l-

RUS150n-RUS150t-RUS150w-

RUS150x, RUS164e-RUS164i-RUS164l-

RUS164n-RUS164t-RUS164w-

RUS164x

BLKALS-BLKBLS, BIGKPS, KENGPS,

JIALPS, BEQURU-HXBURU-

XGSURU-ZEDURU, BONKJT-

GEFKJT-GRAKJT-HOCKJT-

MURKJT

Southwestern TP YCHAPS-YCHBPS, PAK001-PAK002-

PAK003-PAK004, PAK005-PAK006-

PAK007, PAK009-PAK010-PAK011-

PAK012, PAK014-PAK015-PAK016

India IND010, IND012, IND019-IND020,

IND021

IND013, IND017

Southeastern TP XINSIC, TANSIC,DAOSIC,WXIYUN-

PTCYUN-WEXYUN, SHANGR

XCHSIC-MAXSIC, XIANGC, BAWSIC
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curves in climate conditions in the BRT analyses
indicate the sensitivity of tree growth to climate. The
nonlinear response has a sigmoid shape with the
steepest gradient for precipitation levels around
200 mm for the late and non-growing seasons and
125 mm for the current early growing season, respec-
tively (figure 5), indicating the strongest response in
these climate conditions. The strongest interaction are
found between the precipitation of the late and non-
growing seasons and that of the current early growing

season (figure 5, lower left), which are particularly
strong s as indicated by the steepest gradients in the
late and non-growing seasons precipitation is around
250 mm and the growing season precipitation is
around 170 mm. When considering the influences of
both temperature and precipitation, we again found
that precipitation in the late and non-growing seasons
has the highest influence explaining 28.5% of the total
variance, which is followed by the precipitation of the
current early growing season (figure 6). The three

38º N

42º N

34º N

30º N

75º E 80º E 85º E 90º E 95º E 100º E 105º E

Figure 4. Locations of the tree-ring sites (circle) and those sites (star) showing the strongest correlations withmoisture of a
hydrological year.

Figure 5.The (upper panel) partial dependency plots showing the BRT-modeled response of tree growth to the precipitation of the
previous early growing season frompreviousMay to July (−May− Jul), the late and non-growing season fromprevious August to
current April (−Aug+Apr) and the current early growing season from currentMay to July (+May + Jul), and the (lowest panel) the
partial dependence plots showing the interaction between precipitation fromprevious early growing season, late and non-growing
season and the current early growing season.
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Figure 6. Same asfigure 4, but additionally includes the influences of temperature on tree growth fromprevious early growing season
(−May− Jul), late and non-growing season (−Aug+Apr) and the current early growing season (+May + Jul).

Figure 7. Same asfigure 5, but additionally includes the influences of precipitation and temperature on tree growth from a
hydrological year fromprevious August to current July (−Aug + Jul).
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strongest interactions are seen between the precipita-
tion of the late and non-growing seasons and (i) the
temperatures of the previous and (ii) current early
growing seasons, and (iii) the precipitation of the
current early growing season. The interactions are
particularly strong when the late and non-growing
seasons precipitation is ∼250 mm. When the influ-
ences of the precipitation and temperature of the
hydrological year are also included, the precipitation
of the hydrological year has the highest influence
(26%), followed by the precipitations of the late and
non-growing seasons and the current early growing
season (figure 7). The influences of moisture of a
hydrological year on tree growth is most conspicuous
when the hydrological year precipitation is from∼380
to ∼600 mm as indicated by the steep gradient of the
sigmoid shape response curve. The two strongest
interactions are found between the precipitation of the
hydrological year from ∼380 to ∼600 mm and the
temperatures of the current and previous growing
seasons, followed by the interactions between the
precipitation of the late and non-growing seasons and
the temperature of the previous early growing season.

4.Discussion

4.1. BRT in dendroclimatology
The ML feature in BRT method does not assume
a priori knowledge on climate–growth relationships,
which is particularly useful for datasets where such
knowledge is not adequately developed or does not
exist. The advantages of BRT-basedmodeling contains
not only statistical features (Elith et al 2008, Salonen
et al 2012), but also is immune to overfitting, which is
a common challenge of ANNs (Friedman et al 2000).
In addition, the interactions between climate variables
are automatically included in BRT modeling because
the responses are determined by the input values in the
regression trees (Elith et al 2008). Traditional climate–
growth analyses, based upon the widely used correla-
tion coefficient, can face difficulties in reveal the real
climatic influences on growth of the climate variables
are strongly correlated (Fritts 1976, Cook and Peder-
son 2011). The response function can remove the
multi-collineararity among the climate variables, but
the climate variables with real interactions may not be
considered in the response function analysis (Fang
et al 2012a). The BRT technique differs from the
correlation and response functions that are used to
produce a single ‘best’ model and differs from the
ANN method by having better expressions of the
fitting process (De’ath 2007, Elith et al 2008). This is
more efficient in detecting the interactions between
the predictors. Another advantage of the BRTmethod
is that it can calculate the relative influences of the
individual climate variables on tree growth, which are
not available inmany othermethods such as the ANN.

One major difficulty in using the BRT method in
dendroclimatology is the potential for erroneous
modeling due to noisy or insufficient data because the
overlap period between the climate and tree ring data-
sets is relatively short (approximately 60 years in the
TP and vicinity). When pooling tree-ring chron-
ologies from different sites, special attention should be
paid to the autocorrelation and the discrepancies
between these sites (Salonen et al 2012). It also should
be noted that tree rings from remote areasmay contain
low autocorrelation with different growth variations
but their climate–growth relationships may be differ-
ent from each. There is a tradeoff between reducing
the similarity in growth variations and keeping the
similarity of the climate–growth relationships among
sites. In dendroclimatology, the tree-ring indices are
often normalized series with the samemean value over
their entire spans but can have different mean values
over the instrumental period because different series
often have different time spans. The site discrepancies
result from different mean values can cause systematic
biases in BRT analyses. Thus it is necessary to keep the
same mean values for both the tree-ring indices and
climate data from different sites. One still needs to be
in mind that the variability of the tree-ring data can be
different across sites, which can also cause consider-
able biases. It would be helpful to compare the results
from the pooled dataset to the BRT analyses for indivi-
dual datasets. We found that the BRT analyses for
individual datasets also indicate the strong influences
of the late and non-growing season moisture (figure
S3). The shape of the nonlinear dependencies identi-
fied in BRT often has irregular surfaces as shown
before (Elith et al 2008, Salonen et al 2012), yet this
does not severely hinder the interpretations.

In addition, the interactions inferred from BRT
analyses can help selecting of the target climate vari-
ables for reconstructions, which should be the major
climate determinant and no other climate variables
have ‘secondary’ but significant impacts on tree
growth (Juggins 2013). The interactions we observed
(e.g., figures 5–7) between the target climate variable
and the other climate variables violate this assump-
tion. One can avoid reconstructing the climate vari-
ables with significant interactions or can alternatively
combine these climate variables to produce a more
comprehensive variable of climatic or even biological
relevance (Williams et al 2013). The temperature
interacts with precipitation to influence tree growth as
indicated by the highest interaction between tempera-
ture and precipitation instead of having a direct influ-
ence on tree growth. It is thus more reliable to
reconstruct a comprehensive drought indices from
tree rings instead of temperature or precipitation only
when tree rings show significant relationships with
both temperature and precipitation (Cook et al 2010).
For tree rings at sites that show strong responses to the
moisture of the late and non-growing and current
early growing seasons, the reconstruction of moisture
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for a hydrological year should be more robust than
reconstructions of moisture in either the non-growing
or the growing seasons (Sheppard et al 2004).

On the other hand, this BRTmodel can be used to
reconstruct the paleoclimate by using tree rings as pre-
dictors. This is particularly useful if conspicuously
nonlinear climate–growth relationships are observed.
For example, 37 tree-ring chronologies showing high-
est linear correlations with moisture of a hydrological
year only show moderately high relationships with
moisture of a hydrological year in the BRT analyses.
These indicate that the linear correlation analysis may
not fully model the nonlinear climate–growth rela-
tionships for these sites. The nonlinear method are
expected to better reveal the climate extremes relative
to the linear method as the nonlinearity in climate–
growth relationships often increases towards the cli-
mate thresholds (Fang et al 2012b). For the BRT based
reconstruction, one expected difficulty is the low sam-
ple size, which requires for pooling tree rings from dif-
ferent sites. Thus, it is appropriate for the BRTmethod
to be used for climate reconstructions of large areas
including several different sites but less proper for
reconstructions of a single point or a small area.

4.2. A drought stress on tree growth in the TP and
surrounding regions
Although temperature shows higher linear correlation
with tree growth than precipitation, both the response
and the BRT analyses indicate that the precipitation
plays a more important role. The strongest interaction
between temperature and precipitation in BRT ana-
lyses further indicate that the temperature is more
likely to play an indirect role on tree growth by
modulating the soil moisture via evaporation. For this
area, themoisture availability is themajor determinant
for tree growth. High temperatures in the TP and
surroundings can be associated with enhanced
drought and reduced tree growth, except for the tree
growths in Southeastern TP where sufficient water is
available. The decline in tree growth is typically seen
for trees on the marginal areas of Northeastern TP
associated with the warming trend and the reduced
precipitation due to the decay of the Asian summer
monsoon (Cook et al 2010, Fang et al 2012b, 2012c).
Similar warming-induced growth decline was also
observed in the arid inner Asia area (Mongolia and
Northern China) (Liu et al 2013). Although the
current warming have enhanced the local water cycle
in the past decades, resulting in more precipitation
and increased tree growth in Northeastern TP (Yang
et al 2014). However, the long-term warming trend
has been found to have different impacts, such as the
associated retreat of mountain glaciers across the TP,
suggesting long-term opposing changes in the regional
water balance. Because these glaciers form an impor-
tant water resource for the lower catchment regions,
glacial retreat can reduce the available moisture and

decrease tree growth in the future scenarios of global
warming. The arid areas, including the study region,
appear quite sensitive to current warming trend (Ji
et al 2014). Accordingly, if the future warming trend
continues, the forests in the arid parts of the TP and
surroundings could be highly vulnerable because of
their negative effects on forest growth.

4.3. Effects ofmoisture of the hydrological year on
tree growth
Trees in this arid region often form pure forests with
little competition for moisture and nutrients. Such
trees may adapt to this arid environment by utilizing
the moisture of a whole hydrological year, which has
also been revealed in other arid regions, such as
Mongolia (Pederson et al 2001). In the early growing
season, the intense photosynthesis activities that result
in most of the ring-width formation require large
amount of moisture (Gou et al 2013). However, the
monsoon front does not reach this area in the start
early growing season. The snowmelt from the non-
growing season makes up a large portion of the
moisture for the early growing season. Thus higher
relative influence of moisture on tree growth are
observed for the late and non-growing season but not
the current early growing season for many regions.
Since the spring precipitation in Northwestern TP and
surroundings is relatively more abundant than the
marginal areas of Northeastern TP, the responses to
moisture of a hydrological years is not that conspic-
uous in Northwestern TP and surroundings in the
BRT analysis. The strong interaction between the
moisture from the late and non-growing season and
the current early growing season shown by the BRT
analysis supports the hypothesis that moisture in the
late and non-growing season is retained for tree
growth in the following growing season, which has
also been revealed in previous studies (Fang
et al 2012b). Temperature on the marginal areas of
Northeastern TP generally peaks in July, which can
result in drought stress due to warming-induced
evaporation (Cook et al 2010), which might be
contribute to the completion of the ring-width forma-
tion in the early growing season. In the late-growing
season after August or July, moisture is used for
lignification and to produce nutrients for tree growth
of the following year (Gou et al 2013). Therefore,
moisture is not significantly correlated with tree
growth in the late growing season but significantly
correlatedwith tree growth in the following year.

The strongest influences of moisture of a hydro-
logical year on tree growth further indicates the special
importance of soil for forest growth in this region due
to its important role in retaining the moisture. There-
fore the ‘forests islands’ on the treelessmarginal areas of
Northeastern TP are often found in sites with rocky
base, which can better retain the soil moisture relative
to the porous loess (Fang et al 2012b, 2012c).
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Accelerated settlement of the black carbon aerosol due
to the enhanced industrial activities, particularly high in
winter, since the 1980s in the TP and surroundings, has
observed to accelerate the snowmelt in the non-grow-
ing seasons by lowering down the albedo of the snow
(Huang et al 2011). In China, there have been projects
to utilize the non-growing snowfall for agricultural
activities of the lower reaches of the rivers for this area
by facilitating snowmelt via adding carbon dusts on the
snow, which acts similarly as the black carbon aerosols.
We strongly suggest not doing this as the non-growing
season precipitation are highly useful for the growth of
the local forests. In addition, deforestation can enhance
the soil erosion, which makes the forest growth in this
area more stressful. Apart from the marginal area of
Northeastern TP, it is suggested to pay attention to the
water and soil conservation in other areas of theNorth-
eastern TP, the Tianshan Mountains and the South-
western TP that show less conspicuous but also strong
relationships tomoisture of a hydrological year.

5. Conclusions

Using a network of 152 tree-ring chronologies, we
investigated the linear and nonlinear climate–growth
relationships in TP and surroundings. The major
difficulty in applying the BRT method to dendrocli-
matology is the short overlap period between tree rings
and climate datasets. We therefore pooled tree-ring
chronologies with similar climate–growth relation-
ships but different growth patterns from remote
regions into one BRT application. Drought stress
induced by a warm climate is the major climatic
determinant for tree growth. Temperature is indirectly
related to tree growth by reducing the soil moisture via
warming induced evaporation as suggested by the
strong interactions between temperature and precipi-
tation in this area. Continuous warming and potential
drying due to the retreat of the mountain glaciers may
cause a growth decline in the future. Tree rings in
many drought-stressed sites show significant relation-
ships with themoisture of a hydrological year, which is
particularly significant on themarginal areas ofNorth-
eastern TP. Soil moisture retained prior to the start of
the early growing season in May can strongly con-
tribute to the ring width formation because the most
of the ring-width formation occur in this period while
the monsoon front does not reach this area yet. It is
thus the late and non-growing season moisture has
high relative influence on tree growth in the current
early growing season. It is therefore highly important
for soil protection in these seriously eroded areas as
the soil is important to retain the late and non-growing
water. From the late growing season since August, the
moisture is used for cell wall thickening and producing
nutrients for the tree growth of the next year. Thus
moisture of the late growing season is more signifi-
cantly correlated with ring width of the following year.

The strong interactions between temperature and
precipitation and between moisture prior to and the
current early growing seasons demonstrate the utility
in reconstructing a composite climate variable that
incorporates these climate signals.
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