45 research outputs found

    A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium

    Get PDF
    BACKGROUND: Four human coronaviruses are currently known to infect the respiratory tract: human coronaviruses OC43 (HCoV-OC43) and 229E (HCoV-229E), SARS associated coronavirus (SARS-CoV) and the recently identified human coronavirus NL63 (HCoV-NL63). In this study we explored the incidence of HCoV-NL63 infection in children diagnosed with respiratory tract infections in Belgium. METHODS: Samples from children hospitalized with respiratory diseases during the winter seasons of 2003 and 2004 were evaluated for the presence of HCoV-NL63 using a optimized pancoronavirus RT-PCR assay. RESULTS: Seven HCoV-NL63 positive samples were identified, six were collected during January/February 2003 and one at the end of February 2004. CONCLUSIONS: Our results support the notation that HCoV-NL63 can cause serious respiratory symptoms in children. Sequence analysis of the S gene showed that our isolates could be classified into two subtypes corresponding to the two prototype HCoV-NL63 sequences isolated in The Netherlands in 1988 and 2003, indicating that these two subtypes may currently be cocirculating

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I:Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for i

    Genetic Variability of Human Respiratory Coronavirus OC43

    No full text

    Ranst M. A pancoronavirus RTPCR assay for detection of all known coronaviruses. Methods Mol Biol 2008

    No full text
    Abstract The recent discoveries of novel human coronaviruses, including the coronavirus causing SARS, and the previously unrecognized human coronaviruses HCoV-NL63 and HCoV-HKU1, indicate that the family Coronaviridae harbors more members than was previously assumed. All human coronaviruses characterized at present are associated with respiratory illnesses, ranging from mild common colds to more severe lower respiratory tract infections. Since the etiology of a relatively large percentage of respiratory tract diseases remains unidentified, it is possible that for a certain number of these illnesses, a yet unknown viral causative agent may be found. Screening for the presence of novel coronaviruses requires the use of a method that can detect all coronaviruses known at present. In this chapter, we describe a pancoronavirus degenerate primer-based method that allows the detection of all known and possibly unknown coronaviruses by RT-PCR amplification and sequencing of a 251-bp fragment of the coronavirus polymerase gene

    Towards a unified classification for human respiratory syncytial virus genotypes.

    No full text
    Since the first human respiratory syncytial virus (HRSV) genotype classification in 1998, inconsistent conclusions have been drawn regarding the criteria that define HRSV genotypes and their nomenclature, challenging data comparisons between research groups. In this study, we aim to unify the field of HRSV genotype classification by reviewing the different methods that have been used in the past to define HRSV genotypes and by proposing a new classification procedure, based on well-established phylogenetic methods. All available complete HRSV genomes (>12,000 bp) were downloaded from GenBank and divided into the two subgroups: HRSV-A and HRSV-B. From whole-genome alignments, the regions that correspond to the open reading frame of the glycoprotein G and the second hypervariable region (HVR2) of the ectodomain were extracted. In the resulting partial alignments, the phylogenetic signal within each fragment was assessed. Maximum likelihood phylogenetic trees were reconstructed using the complete genome alignments. Patristic distances were calculated between all pairs of tips in the phylogenetic tree and summarized as a density plot in order to determine a cutoff value at the lowest point following the major distance peak. Our data show that neither the HVR2 fragment nor the G gene contains sufficient phylogenetic signal to perform reliable phylogenetic reconstruction. Therefore, whole-genome alignments were used to determine HRSV genotypes. We define a genotype using the following criteria: a bootstrap support of ≥ 70 per cent for the respective clade and a maximum patristic distance between all members of the clade of ≤0.018 substitutions per site for HRSV-A or ≤0.026 substitutions per site for HRSV-B. By applying this definition, we distinguish twenty-three genotypes within subtype HRSV-A and six genotypes within subtype HRSV-B. Applying the genotype criteria on subsampled data sets confirmed the robustness of the method.status: Published onlin

    Prevalence and seasonality of six respiratory viruses during five consecutive epidemic seasons in Belgium

    No full text
    BACKGROUND: Acute Respiratory Infections (ARIs) are a major health problem, especially in young children and the elderly. OBJECTIVES: Insights into the seasonality of respiratory viruses can help us understand when the burden on society is highest and which age groups are most vulnerable. STUDY DESIGN: We monitored six respiratory viruses during five consecutive seasons (2011-2016) in Belgium. Patient specimens (n=22876), tested for one or more of the following respiratory viruses, were included in this analysis: Influenza viruses (IAV & IBV), Human respiratory syncytial virus (hRSV), Human metapneumovirus (hMPV), Adenovirus (ADV) and Human parainfluenza virus (hPIV). Data were analysed for four age categories: <6y, 6-17y, 18-64y and ≥65y. RESULTS: Children <6y had the highest infection rates (39% positive vs. 20% positive adults) and the highest frequency of co-infections. hRSV (28%) and IAV (32%) caused the most common respiratory viral infections and followed, like hMPV, a seasonal pattern with winter peaks. hRSV followed an annual pattern with two peaks: first in young children and ±7 weeks later in elderly. This phenomenon has not been described in literature so far. hPIV and ADV occurred throughout the year with higher rates in winter. CONCLUSIONS: Children <6y are most vulnerable for respiratory viral infections and have a higher risk for co-infections. hRSV and IAV are the most common respiratory infections with peaks during the winter season in Belgium.status: publishe

    Viral load quantitation of SARS-coronavirus RNA using a one-step real-time RT-PCR

    Get PDF
    SummaryIntroductionSevere acute respiratory syndrome (SARS) is an emerging infectious disease that first occurred in humans in the People's Republic of China in November 2002 and has subsequently spread worldwide. A novel virus belonging to the Coronaviridae family has been identified as the cause of this pulmonary disease. The severity of the disease combined with its rapid spread requires the development of fast and sensitive diagnostic assays.ResultsA real-time quantitative RT-PCR was designed in the nsp11 region of the replicase 1B domain of the SARS-coronavirus (SARS-CoV) genome. To evaluate this quantitative RT-PCR, cRNA standards were constructed by in vitro transcription of SARS-CoV Frankfurt 1 RNA using T7 RNA polymerase, followed by real-time RT-PCR. The assay allowed quantitation over a range of 102 to 108 RNA copies per reaction.ConclusionsExtrapolated to clinical samples, this novel assay has a detection range of 104 to 1010 copies of viral genome equivalents per millilitre. In comparison to the current de facto cRNA Artus Biotech standard, the in-house cRNA standard gives a 100-fold higher absolute quantity, suggesting a possible underestimation of the viral load when using the Artus Biotech standard
    corecore