939 research outputs found

    A method for the madness: An international survey of health professions education authors' journal choice

    Get PDF
    INTRODUCTION: Scholarship is a key activity in health professions education (HPE). When disseminating scholarly work, how one selects the journal to which they submit is often argued to be a key determinant of subsequent success. To draw more evidence-based recommendations in this regard, we surveyed successful scholars working in HPE regarding their perspectives and experiences with journal selection. METHODS: We conducted an international survey of HPE scholars, investigating their decisions regarding journal choice. Corresponding authors were identified from a sample of 4000 papers published in 2019 and 2020. They were invited via email with up to four reminders. We describe their experience and use principle component and regression analyses to identify factors associated with successful acceptance. RESULTS: In total, 863 responses were received (24.7% response rate), 691 of which were included in our analyses. Two thirds of respondents had their manuscripts accepted at their first-choice journal with revisions required in 98% of cases. We identified six priority factors when choosing journals. In descending order of importance, they were: fit, impact, editorial reputation, speed of dissemination, breadth of dissemination, and guidance from others. Authors who prioritised fit higher and who selected a journal earlier were more likely to have their manuscripts accepted at their first-choice journal. DISCUSSION: Based on our results we make three recommendations for authors when writing manuscripts: do not be disheartened by a revise decision, consider journal choice early in the research process, and use the fit between your manuscript and the journal as the main factor driving journal choice

    The neodymium stable isotope composition of the oceanic crust: Reconciling the mismatch between erupted mid-ocean ridge basalts and lower crustal gabbros

    Get PDF
    The trace element and isotopic compositions of mid-ocean ridge basalts (MORB) provide an important cornerstone for all studies seeking to understand mantle evolution. Globally there is a significant over-enrichment in the incompatible trace element concentrations of MORB relative to levels which should be generated by fractional crystallization. Thermal and geochemical constraints suggest that MORB require generation in open system magma chambers. However, the petrology of lower oceanic crustal rocks suggests instead that these enrichments maybe formed through reactive porous flow (RPF). Stable isotope compositions are process dependent and therefore provide an excellent mechanism to compare these contrasting models. This study presents the first neodymium (Nd) stable isotope compositions of Indian MORB and well characterized gabbroic rocks from the lower oceanic crust sampled at the Southwest Indian Ridge (Hole 735B). Indian MORB is extremely homogenous with a mean δ146Nd of −0.025 ±0.005‰ which is identical to the composition of Pacific MORB. Despite significant variability in the source composition of MORB globally (i.e. 143Nd/144Nd) their indistinguishable δ146Nd compositions suggests they were homogenized through the same process along the global ridge network. In stark contrast, oceanic gabbros have δ146Nd ranging from −0.026‰ to −0.127‰, doubling the natural variability in Nd stable isotopes observed in terrestrial rocks. Clinopyroxene separates possess variable δ146Nd but are isotopically heavier than the gabbroic whole rocks at the same major element compositions. These large variations in δ146Nd cannot be generated solely by the fractionation or accumulation of clinopyroxene and/or plagioclase. Hole 735B preserves widespread evidence of RPF which could induce kinetic isotopes fractionation during crystal growth. In clinopyroxene kinetic isotope fractionations will only induce ca. 0.02‰ variations therefore several cycles of dissolution and reprecipitation of isotopic signatures at grain boundaries are required to explain the range of δ146Nd observed in the gabbros. Given the large disconnect between the average composition of the lower crust (δ146Nd = −0.076‰) and MORB globally and the evidence of limited melt extraction into the upper crust at Hole 735B it is highly unlikely that the melts involved in RPF contributed in a substantial way to the Nd isotope composition of erupted MORB

    Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes

    Get PDF
    Estimates of the volume of the earliest crust based on zircon ages and radiogenic isotopes remain equivocal. Stable isotope systems, such as molybdenum, have the potential to provide further constraints but remain underused due to the lack of complementarity between mantle and crustal reservoirs. Here we present molybdenum isotope data for Archaean komatiites and Phanerozoic komatiites and picrites and demonstrate that their mantle sources all possess subchondritic signatures complementary to the superchondritic continental crust. These results confirm that the present-day degree of mantle depletion was achieved by 3.5 billion years ago and that Earth has been in a steady state with respect to molybdenum recycling. Mass balance modelling shows that this early mantle depletion requires the extraction of a far greater volume of mafic-dominated protocrust than previously thought, more than twice the volume of the continental crust today, implying rapid crustal growth and destruction in the first billion years of Earth’s history

    The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    Get PDF
    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction

    Assessing hydrological controls on the lithium isotope weathering tracer

    Get PDF
    To investigate the impact of riverine discharge and weathering intensity on lithium isotopes (δ7Li) in a mono-lithological terrain, this study examines the dissolved load and leached suspended load (exchangeable, oxide, and clay fractions) from Icelandic rivers spanning a wide range of discharge, weathering rates, and weathering intensity. The δ7Lidissolved co-varies inversely with the discharge, confirming that water-rock interaction time is a primary control on the secondary mineral formation that fractionates Li isotopes. The “boomerang” shape observed in global rivers between the weathering intensity (i.e. W/D = weathering rate/denudation rate) and δ7Lidissolved also exists for these basaltic rivers at low to medium W/D. However, these rivers do not extend to such low δ7Lidissolved values as seen in the global compilation at low W/D, indicating that there is a lithological control on this relationship arising from the type of the lithology-specific secondary minerals forming and their precipitation rates. In addition, the Δ7Lix-dissolved between each leached solid phase and the dissolved load also co-varies with discharge. At low discharge (long water-rock interaction times), Δ7Lix-dissolved values agree with experimentally-determined equilibrium values, whereas less fractionated values are observed at higher discharge (shorter water-rock interaction times). As a result, there is a different relationship between W/D and Δ7Liclay-source in this basaltic terrain than previously reported from global multi-lithological river sediment samples, with clay leachates from Iceland more closely mimicking the boomerang shape of the dissolved load. However, the relationship between δ7Li and weathering processes is complicated because the fractionation between the clay fraction and the dissolved load is not constant but varies with both W/D and discharge. Overall, this study confirms the utility of Li isotopes as a tracer of modern and palaeo-weathering processes, and also has important implications for the specific interpretations of detrital δ7Li values, which may be more sensitive to weathering parameters than previously thought

    Assessing hydrological controls on the lithium isotope weathering tracer

    Get PDF
    To investigate the impact of riverine discharge and weathering intensity on lithium isotopes (δ7Li) in a mono-lithological terrain, this study examines the dissolved load and leached suspended load (exchangeable, oxide, and clay fractions) from Icelandic rivers spanning a wide range of discharge, weathering rates, and weathering intensity. The δ7Lidissolved co-varies inversely with the discharge, confirming that water-rock interaction time is a primary control on the secondary mineral formation that fractionates Li isotopes. The “boomerang” shape observed in global rivers between the weathering intensity (i.e. W/D = weathering rate/denudation rate) and δ7Lidissolved also exists for these basaltic rivers at low to medium W/D. However, these rivers do not extend to such low δ7Lidissolved values as seen in the global compilation at low W/D, indicating that there is a lithological control on this relationship arising from the type of the lithology-specific secondary minerals forming and their precipitation rates. In addition, the Δ7Lix-dissolved between each leached solid phase and the dissolved load also co-varies with discharge. At low discharge (long water-rock interaction times), Δ7Lix-dissolved values agree with experimentally-determined equilibrium values, whereas less fractionated values are observed at higher discharge (shorter water-rock interaction times). As a result, there is a different relationship between W/D and Δ7Liclay-source in this basaltic terrain than previously reported from global multi-lithological river sediment samples, with clay leachates from Iceland more closely mimicking the boomerang shape of the dissolved load. However, the relationship between δ7Li and weathering processes is complicated because the fractionation between the clay fraction and the dissolved load is not constant but varies with both W/D and discharge. Overall, this study confirms the utility of Li isotopes as a tracer of modern and palaeo-weathering processes, and also has important implications for the specific interpretations of detrital δ7Li values, which may be more sensitive to weathering parameters than previously thought

    The Grizzly, February 15, 2000

    Get PDF
    UC Students Debate Pros, Cons of Pledging On Campus • Feelings of Brotherhood, Sisterhood Prevalent During Pledging Process • Employment Available for Graduating Seniors • True Love: Sorrow and Devotion • Hackers, Hijackers, and the Wide World of Sports • The Greeks Agree: Pledges Have no Free Will • Pledging: What\u27s the Big Deal Anyway? • muMs Schemes at Ursinus • Pat McGee to Jam at Ursinus • Music Review: The Alligator Blues Band • Gymnastics Tops RIC with Season High Score • Intramural 3 on 3 Action: Brains vs. Brute • Indoor Track Steps Up to Eight Way Challenge • Ursinus Wrestling Battles for 4-1 • Sports Profile: Shana Goanehttps://digitalcommons.ursinus.edu/grizzlynews/1459/thumbnail.jp

    An investigation into the use of a movement assessment protocol for under 14 rugby league players in a talent development environment

    Get PDF
    This study investigated the use of a movement assessment protocol for under-14 rugby league players by evaluating the relationships between chronological age, maturation, and anthropometry, and fitness and qualitative movement assessments (QMA) of 84 rugby league players within a talent development environment. A one-way ANOVA showed Quartile 1 players were more mature, taller (173.0±7.4 vs 165.0±8.0 cm) and heavier (72.5 vs 58.7 kg) than Quartile 4 players, with no difference evident for fitness or QMA measures. Earlier maturing players had significantly greater upper body power (5.39±0.46 vs 4.42±0.68 m), 20m speed (3.48±0.14 vs 3.65±0.19s) and power pass QMA (13.88±2.18 vs 12.00±1.98) than later maturing players. Body mass was positively related to power pass fitness (r=0.50) and QMA (r=0.22) scores, with negative relationships found for vertical jump performance (r=-0.24), sprint QMA (r=-.29) and turn off either foot QMA (r=-0.26). There is a need to educate coaches about the use of both fitness testing and qualitative movement assessments to identify talented U14 rugby league players, which potentially reduces relative age and maturational biases

    Broadly neutralizing antibodies abrogate established hepatitis C virus infection

    Get PDF
    In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs—AR3A, AR3B, and AR4A—delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection
    corecore