4,464 research outputs found

    Technology has changed the face of privacy: here’s what you need to do next

    Get PDF

    Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

    Full text link
    We show how a quantum walk can be implemented for the first time in a quantum quincunx created via superconducting circuit quantum electrodynamics (QED), and how interpolation from quantum to random walk is implemented by controllable decoherence using a two resonator system. Direct control over the coin qubit is difficult to achieve in either cavity or circuit QED, but we show that a Hadamard coin flip can be effected via direct driving of the cavity, with the result that the walker jumps between circles in phase space but still exhibits quantum walk behavior over 15 steps.Comment: 8 pages, 4 figures, 2 table

    Heavily Obscured Quasar Host Galaxies at z~2 are Disks, Not Major Mergers

    Full text link
    We explore the nature of heavily obscured quasar host galaxies at z~2 using deep Hubble Space Telescope WFC3/IR imaging of 28 Dust Obscured Galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4%, at most 11-25%) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90% of the host galaxies are either disk dominated, or have a significant disk. This disk-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the co-incidence of mergers and AGN activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers.Comment: 5 pages, 4 figures, 1 table. To appear as a Letter in MNRA

    A Turnover in the Galaxy Main Sequence of Star Formation at M1010MM_{*} \sim 10^{10} M_{\odot} for Redshifts z<1.3z < 1.3

    Full text link
    The relationship between galaxy star formation rates (SFR) and stellar masses (MM_\ast) is re-examined using a mass-selected sample of \sim62,000 star-forming galaxies at z1.3z \le 1.3 in the COSMOS 2-deg2^2 field. Using new far-infrared photometry from HerschelHerschel-PACS and SPIRE and SpitzerSpitzer-MIPS 24 μ\mum, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram (NUVr)(NUV - r) vs. (rK)(r - K), we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median SFRSFR and MM_\ast follows a power-law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about M01010MM_{0} \sim 10^{10} M_{\odot} at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of (1+z)4.12±0.10(1+z)^{4.12 \pm 0.10}. A broken power-law fit below and above the turnover mass gives relationships of SFRM0.88±0.06SFR \propto M_{*}^{0.88 \pm 0.06} below the turnover mass and SFRM0.27±0.04SFR \propto M_{*}^{0.27 \pm 0.04} above the turnover mass. Galaxies more massive than M1010 MM_\ast \gtrsim 10^{10}\ M_{\rm \odot} have on average, a much lower specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.Comment: 16 pages, 7 figures. Accepted for publication in Ap
    corecore