137 research outputs found

    Improvements to the alignment process in electron-beam lithography

    Get PDF
    Electron beam lithography is capable of defining structures with sub-10 nm linewidths. To exploit this capability to produce working devices with structures defined in multiple 'lithographic steps' a process of alignment must be used. The conventional method of scanning the electron beam across simple geometrically shaped markers will be shown inherently to limit the alignment accuracy attainable. Improvements to alignment allow precise placement of elements in complex multi-level devices and may be used to realise structures which are significantly smaller than the single exposure resist limit. Correlation based alignment has been used previously as an alignment technique, providing improvements to the attainable accuracy and noise immunity of alignment. It is well known that the marker pattern used in correlation based alignment has a strong influence on the magnitude of the improvements that can be realised. There has, to date, however, been no analytical study of how the design of marker pattern affects the correlation process and hence the alignment accuracy possible. This thesis analyses the correlation process to identify the features of marker patterns that are advantageous for correlation based alignment. Several classes of patterns have been investigated, with a range of metrics used to determine the suitability and performance of each type of pattern. Penrose tilings were selected on this basis as the most appropriate pattern type for use as markers in correlation based alignment. A process for performing correlation based alignment has been implemented on a commercial electron beam lithography tool and the improvements to the alignment accuracy have been demonstrated. A method of measuring alignment accuracy at the nanometer scale, based on the Fourier analysis of inter-digitated grating has been introduced. The improvements in alignment accuracy realised have been used to facilitate the fabrication of 'nanogap' and 'nanowire' devices - structures which have application in the fields of molecular electronics and quantum conduction. Fabrication procedures for such devices are demonstrated and electrical measurements of such structures presented to show that it is a feasible method of fabrication which offers much greater flexibility than the existing methods for creating these devices

    Alignment verification for electron beam lithography

    Get PDF
    Alignment between lithography layers is essential for device fabrication. A minor defect in a single marker can lead to incorrect alignment and this can be the source of wafer reworks. In this paper we show that this can be prevented by using extra alignment markers to check the alignment during patterning, rather than inspecting vernier patterns after the exposure is completed. Accurate vernier patterns can often only be read after pattern transfer has been carried out. We also show that by using a Penrose tile as a marker it is possible to locate the marker to about 1 nm without fully exposing the resist. This means that the marker can be reused with full accuracy, thus improving the layer to layer alignment accuracy. Lithography tool noise limits the process

    Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Get PDF
    Open Access funded by British Heart Foundation Under a Creative Commons license Acknowledgments Our thanks go to Gioia Polidori Francisco for training and discussions, Kate Watt and Yvonne Turnbull for technical and laboratory managerial support, Kadri Oras and Laura Ferguson for experimental support, Po-Lin So and Bruce Conklin (Gladstone Institutes) for providing their unpublished protocols, and Yukio Nakamura for discussion. This research is supported by the British Heart Foundation (PG/12/75/29851) and the Institute of Medical Sciences. A.S.B. was supported by the British Heart Foundation (FS/12/37/29516).Peer reviewedPublisher PD

    InGaN/GaN Laser Diodes with High Order Notched Gratings

    Get PDF
    We report on InGaN/GaN distributed feedback laser diodes with high order gratings emitting at a single wavelength around 428 nm. The 39th order notched gratings have the advantage of a simplified fabrication route with no need for overgrowth. The laser ridge and grating were formed by electron beam lithography followed by ICP etching. The as-cleaved lasers emitted in the pulsed regime with a peak single-mode output power of 15 mW. Optimization of the grating design should lead to higher power single wavelength operation

    C/EBP␤ Reprograms White 3T3-L1 Preadipocytes to a Brown Adipocyte Pattern of Gene Expression *

    Get PDF
    cAMP-dependent protein kinase induction of PPAR␥ coactivator-1␣ (PGC-1␣) and uncoupling protein 1 (UCP1) expression is an essential step in the commitment of preadipocytes to the brown adipose tissue (BAT) lineage. We studied the molecular mechanisms responsible for differential expression of PGC-1␣ in HIB1B (BAT) and 3T3-L1 white adipose tissue (WAT) precursor cell lines. In HIB1B cells PGC-1␣ and UCP1 expression is cAMP-inducible, but in 3T3-L1 cells, expression is reduced and is cAMP-insensitive. A proximal 264-bp PGC-1␣ reporter construct was cAMP-inducible only in HIB1B cells and was suppressed by site-directed mutagenesis of the proximal cAMP response element (CRE). In electrophoretic mobility shift assays, the transcription factors CREB and C/EBP␤, but not C/EBP␣ and C/EBP␦, bound to the CRE on the PGC-1␣ promoter region in HIB1B and 3T3-L1 cells. Chromatin immunoprecipitation studies demonstrated that C/EBP␤ and CREB bound to the CRE region in HIB1B and 3T3-L1 cell lysates. C/EBP␤ expression was induced by cAMP only in HIB1B cells, and overexpression of C/EBP␤ rescued cAMP-inducible PGC-1␣ and UCP1 expression in 3T3-L1 cells. These data demonstrate that differentiation of preadipocytes toward the BAT rather than the WAT phenotype is controlled in part by the action of C/EBP␤ on the CRE in PGC-1␣ proximal promoter

    Generation of Functional Beta-Like Cells from Human Exocrine Pancreas

    Get PDF
    <div><p>Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin<sup>+</sup> cells. The resultant β-like cells expressed insulin protein levels at ~15–30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.</p></div

    Distributed feedback InGaN/GaN laser diodes

    Get PDF
    We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length

    GaN-based distributed feedback laser diodes for optical communications

    Get PDF
    Over the past 20 years, research into Gallium Nitride (GaN) has evolved from LED lighting to Laser Diodes (LDs), with applications ranging from quantum to medical and into communications. Previously, off-the-shelf GaN LDs have been reported with a view on free space and underwater communications. However, there are applications where the ability to select a single emitted wavelength is highly desirable, namely in atomic clocks or in filtered free-space communications systems. To accomplish this, Distributed Feedback (DFB) geometries are utilised. Due to the complexity of overgrowth steps for buried gratings in III-Nitride material systems, GaN DFBs have a grating etched into the sidewall to ensure single mode operation, with wavelengths ranging from 405nm to 435nm achieved. The main motivation in developing these devices is for the cooling of strontium ions (Sr+) in atomic clock applications, but their feasibility for optical communications have also been investigated. Data transmission rates exceeding 1 Gbit/s have been observed in unfiltered systems, and work is currently ongoing to examine their viability for filtered communications. Ultimately, transmission through Wavelength Division Multiplexing (WDM) or Orthogonal Frequency Division Multiplexing (OFDM) is desired, to ensure that data is communicated more coherently and efficiently. We present results on the characterisation of GaN DFBs, and demonstrate their capability for use in filtered optical communications systems

    Large Area Metasurface Lenses in the NIR Region

    Get PDF
    Metasurfaces have revolutionized the definition of compact optics. Using subwavelength periodic structures of nanostructured dielectrics, the refractive index and absorption properties of metasurfaces – which are 2D metamaterials – can manipulate light to a degree not possible with conventional bulk glasses and crystals. The phase, polarization, spin (for circularly polarized light), amplitude and wavelength of light can all be manipulated and crafted to user-specified values to mimic the action of a lens, which we refer to as a metalens (ML). MLs have four major advantages over traditional refractive lenses – superior resolution, lighter weight, miniaturization and cost. Many metasurfaces with useful functionalities have been proposed in recent years, yet although novel in their approach have few real-world applications. One such market is the use within infrared laser systems, such as laser designators. In this work, we demonstrate metasurface lenses working at a wavelength of λ = 1064 nm, with aperture d = 1 mm and four different Fnumbers (focal length f = 0.5, 1, 2 and 5 mm). The lenses are composed of 700nm high a-Si pillars – ranging from 70- 360 nm diameter – which are fabricated using electron beam lithography (EBL) and reactive ion etching processes, on top of a fused silica substrate. Such lenses are shown to have diffraction-limited performance, with focal spot-size agreeing with theoretical values of λ‧f/d. Furthermore, we have designed large area lenses with aperture d = 10 mm, where the number of pillars per lens exceeds 550 million. By using an efficient Python script, we are able to produce these 100 mm2 samples with just 14 hours of EBL writing time
    corecore