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 

Abstract—We report on InGaN/GaN distributed feedback laser 

diodes with high order gratings emitting at a single wavelength 

around 428 nm. The 39th order notched gratings havethe 

advantage of a simplified fabrication route with no need for 

overgrowth. The laser ridge and grating were formed by electron 

beam lithography followed by ICP etching. The as-cleaved lasers 

emitted in the pulsed regime with a peak single-mode output 

power if 15 mW. Optimization of the grating design should lead to 

higher power single wavelength operation. 

 

Index Terms— Semiconductor lasers, Distributed feedback 

laser diodes, InGaN, GaN, sidewall gratings, slotted laser, notched 

grating. 

 

I. INTRODUCTION 

ASER Diodes based on Gallium Nitride (GaN) have found 

a wide range of applications ranging from atomic 

spectroscopy [1] to  optical communications [2]. To fully 

exploit many of these application areas there is a requirement 

for a GaN laser diode with high spectral purity and wavelength 

selectivity. For example in atomic clocks, where a narrow line 

width blue laser source can be used to target the atomic cooling 

transition [4][5], and in fluorescence spectroscopy for medical 

diagnostics where one can accurately target the  emission 

wavelength [3],  

Previously GaN DFB lasers have been realised by one of two 

approaches, buried [6][7], or surface gratings [8]. Buried 

gratings require complex overgrowth steps which have the 

potential to introduce epi-defects. Surface gratings designs, all 

though simpler to fabricate, can compromise the quality of the 

p-type contact due to dry etch damage and are also prone to 

increased optical losses in the electrically un-pumped grating 

regions. A different approach, where the grating is etched into 

the sidewall of the ridge is described in [9], advantages include 

a simpler fabrication route and design freedom over the grating 

coupling strength. The authors have previously reported third 
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order sidewall gratings in the InGaN/GaN material system 

[10],[11] with single wavelength emission. In this paper we go 

on to investigate lasers with higher order gratings, having the 

advantage of less stringent fabrication tolerances due to the 

larger grating dimensions. Additionally, these devices could 

exhibit narrower linewidths than conventional DFB laser diodes 

[12],[13], and so could be particularly suited to supplications 

such as atomic cooling. 

II. DESIGN 

Our chip designs are based on 39th order gratings and are 

conceptually similar to devices described in [14]. 

Conventionally for this type of device the grating consists of 

slots etched into the top of the laser waveguide ridge. However 

this approach is not suited to GaN laser diodes where the p-type 

GaN contact layer should remain continuous along the ridge to 

minimise resistance and avoid optical losses in the p-type GaN. 

In our design the index perturbations are introduced as regularly 

spaced notches in the ridge sidewall thus maintaining the 

continuity of the contact. 

With high order gratings of this type the reflectivity is 

significantly less than can be achieved with 1st or 3rd order 

gratings. In fact, the dominant source of optical feedback is the 

cleaved facets. The effect of the grating is to introduce a 

wavelength selective optical loss for Fabry Perot (FP) modes 

detuned from the Bragg wavelength. Depending on the 

reflection bandwidth of the grating, lasing can be in a single or 

narrow band of FP mode\s. 
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                            (a)                                                         (b) 
Fig. 1. SEM micrograph of the as etched grating (a), and at higher magnification 

(b).  

 

The grating bandwidth is a function of the reflectivity of the 

individual notch pair. The lower the reflectivity the narrower 

the bandwidth but the larger the number of pairs required to 

maintain the required total reflectivity. For a GaN laser the 

effective modal index is low (~2.4) so the FP modes are closely 

spaced at ~0.05 nm and the grating bandwidth should be of a 

similar value to give single mode operation. We used the TMM 

(transmission matrix method) along with effective indices 

found using a 2D mode solver to calculate the grating 

bandwidth. This technique is approximate [15] but gives us an 

estimate of the required grating length. We calculate a 

bandwidth 0.08 nm using a total 125 notch pairs along the ridge. 

It was also taken into consideration that the notches introduce 

scattering losses so there is an optimal notch number to achieve 

single wavelength operation while minimising the drop in 

efficiency. 

III. FABRICATION 

For fabrication, 39th order gratings and ridges with four 

different periods (spanning 3403 nm to 3486 nm) were defined 

using electron beam lithography (EBL). Inductively coupled 

plasma (ICP) etching was then used to form the 500 nm deep 

grating and ridge. Process chemistry and power settings were 

optimised to give the vertical and smooth etch profile required 

for good grating performance. Figure 1 shows electron 

micrographs of an etched high order grating. Electrical 

contacting was achieved using Pd/Au on the Mg doped p-GaN 

cap layer. The processed wafer was then lapped to 100 μm 

thickness and subsequently cleaved into die of 1000 μm cavity 

length. Full details of the fabrication process can be found in 

[11]. 

IV. RESULTS & DISCUSSION 

  Lasers were characterised under pulsed drive conditions. LIV 

measurements were carried out using a Keithly 2520 automated 

test system.  

0 100 200 300 400 500

0

5

10

15

2

4

6

8

 V
o

lt
a

g
e

 (
V

)

 

P
o

p
t (

m
W

)

Current (mA)

 

 

Fig. 2.  Optical power and voltage as a function of pulsed drive current for 

device A. 

 

For spectral measurements we used an Ocean Optics 

spectrometer with 0.1 nm resolution and for higher resolution 

measurements a Horiba iHR550 with spectral resolution of 

0.025 nm. Note that there was a difference in measured 

wavelength of around 0.5 nm between the two spectrometers. 

A range of devices (A to D) with different grating pitches and 

emission wavelengths were tested (table 1). All devices had a 

ridge width of 2.5 µm (1.5 µm at the notches) and etch depth of 

520nm. Fig 2 shows the voltage and optical power as a function 

of drive current for device A. Peak power is 15 mW measured 

at a drive current of 500 mA. 
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Fig.3. Emission spectra of device A at drive current of 500 mA.  
 

From fig 3 we can see that the device is lasing in a single FP 

mode up to drive currents of 500 mA before becoming 

multimode at higher drive currents (fig 4). This is due to 

detuned FP modes reaching threshold as wavelength dependent 

losses [14] are overcome. Introducing more slot pairs with 

weaker index contrast would decrease the bandwidth of the 

grating and potentially improve single mode performance at 

higher drive currents. 

By varying the temperature of the heatsink between 10 C and 

25 C we were able to temperature tune the single mode emission 

wavelength over a range of 0.2 nm (a temperature tuning 

coefficient of 0.012 nm/K). 
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Fig.4. Emission spectra of device A at drive current of 600 mA. 

 

 

 

 
TABLE I 

WAVELENGTH, GRATING PITCH & EFFECTIVE INDEX FOR CHIPS A TO D 

 

Device Grating 

Pitch (nm) 

Emission 

wavelength 

(nm) 

Grating 

order 

Effective 

Index 

A 3548 328.01 40 2.475 

B 3486 430.61 40 2.471 

C 3403 431.04 39 2.470 

D 3430 433.69 39 2.466 

 

From table 1 we can see that grating pitches of 3458 nm and 

3486 nm gave emission at 428.0 nm and 430.6 nm, around 10 

nm shorter than would have been expected given the modal 

index. This is explained by the fact that the grating has an FSR 

(free spectral range) of ~10 nm and lasing is in the next lowest 

allowed wavelength to the Bragg wavelength. In fact in this 

case the grating is operating in the 40th order rather than the 39th. 

  

𝑛𝑒𝑓𝑓,𝑔 = 𝑛𝑒𝑓𝑓 − 𝜆
𝑑𝑛

𝑑𝜆
 (1) 

 

∆𝜆 =
𝜆2

𝑛𝑒𝑓𝑓,𝑔𝐿𝑐𝑎𝑣
 (2) 

 

From the measured dependence of effective index on 

wavelength, and using (1) we calculate an effective group index 

of 3.5. Using (2) we calculate an FSR of 0.052 nm which agrees 

well with the mode spacing of 0.051 nm observed in fig 4. 
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Fig.5. Effective index versus wavelength for chips A to D. Fitted with 

polynomial function  𝑛𝑒𝑓𝑓 = 11.041 − 0.0380𝑥 + 4.213 ∗ 10−5𝑥2 
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