3,152 research outputs found

    Birds and people in Europe

    Get PDF
    At a regional scale, species richness and human population size are frequently positively correlated across space. Such patterns may arise because both species richness and human density increase with energy availability. If the species-energy relationship is generated through the 'more individuals' hypothesis, then the prediction is that areas with high human densities will also support greater numbers of individuals from other taxa. We use the unique data available for the breeding birds in Europe to test this prediction. Overall regional densities of bird species are higher in areas with more people; species of conservation concern exhibit the same pattern. Avian density also increases faster with human density than does avian biomass, indicating that areas with a higher human density have a higher proportion of small-bodied individuals. The analyses also underline the low numbers of breeding birds in Europe relative to humans, with a median of just three individual birds per person, and 4 g of bird for every kilogram of human

    Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor

    Get PDF
    A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC

    Characteristics of direct human impacts on the rivers Karun and Dez in lowland south-west Iran and their interactions with earth surface movements

    Get PDF
    Two of the primary external factors influencing the variability of major river systems, over river reach scales, are human activities and tectonics. Based on the rivers Karun and Dez in south-west Iran, this paper presents an analysis of the geomorphological responses of these major rivers to ancient human modifications and tectonics. Direct human modifications can be distinguished by both modern constructions and ancient remnants of former constructions that can leave a subtle legacy in a suite of river characteristics. For example, the ruins of major dams are characterised by a legacy of channel widening to 100's up to c. 1000 m within upstream zones that can stretch to channel distances of many kilometres upstream of former dam sites, whilst the legacy of major, ancient, anthropogenic river channel straightening can also be distinguished by very low channel sinuosities over long lengths of the river course. Tectonic movements in the region are mainly associated with young and emerging folds with NW–SE and N–S trends and with a long structural lineament oriented E–W. These earth surface movements can be shown to interact with both modern and ancient human impacts over similar timescales, with the types of modification and earth surface motion being distinguishable. This paper examines the geomorphological evidence and outlines the processes involved in the evolution of these interactions through time. The analysis shows how interactions between earth surface movements and major dams are slight, especially after ancient dam collapse. By contrast, interactions between earth surface movements and major anthropogenic river channel straightening are shown to be a key factor in the persistence of long, near-straight river courses. Additionally, it is suggested that artificial river development, with very limited river channel lateral migration, may promote incision across an active fold at unusually long distances from the fold “core” and may promote markedly increased sinuosity across a structural lineament

    Arterial hypoxaemia and its impact on coagulation:significance of altered redox homeostasis

    Get PDF
    AimsArterial hypoxaemia stimulates free radical formation. Cellular studies suggest this may be implicated in coagulation activation though human evidence is lacking. To examine this, an observational study was designed to explore relationships between systemic oxidative stress and haemostatic responses in healthy participants exposed to inspiratory hypoxia.ResultsActivated partial thromboplastin time and international normalised ratio were measured as routine clinical biomarkers of coagulation and ascorbate free radical (A•−) as a direct global biomarker of free radical flux. Six hours of hypoxia activated coagulation, and increased formation of A•−, with inverse correlations observed against oxyhaemoglobin saturation.ConclusionsThis is the first study to address the link between free radical formation and coagulation in vivo. This ‘proof-of-concept’ study demonstrated functional associations between hypoxaemia and coagulation that may be subject to redox activation of the intrinsic pathway. Further studies are required to identify precisely which intrinsic factors are subject to redox activation.</jats:sec

    Food spoilage in beeswax impregnated cotton cloth wraps compared to standard storage methods

    Get PDF
    Beeswax food wraps have gained popularity as a sustainable, natural alternative to single use options such as plastic bags, plastic wrap, and wax paper. Despite limited evidence, sellers advertise beeswax wraps as having antimicrobial benefits that help food stay fresh longer. The purpose of this investigation was to determine the ability of beeswax impregnated cotton cloth to inhibit food spoilage relative to traditional methods. We designed a prospective trial in which strawberry, bread, and cheese specimens were wrapped in one of the 3 materials: 1) beeswax impregnated cotton cloth, 2) wax paper, or 3) plastic bags alone and followed for 15 days at 65oF for progression of mold growth and other signs of deterioration. For most specimen/timepoint combinations (87%), we found no differences between storage methods. For the 13% of specimen/timepoint combinations where we did note a significant difference, beeswax wraps fared the worst. While beeswax wraps may be preferred as a natural food storage material, their ability to preserve food is no better than conventional options

    Defective Tmprss3-Associated Hair Cell Degeneration in Inner Ear Organoids

    Get PDF
    Mutations in the gene encoding the type II transmembrane protease 3 (TMPRSS3) cause human hearing loss, although the underlying mechanisms that result in TMPRSS3-related hearing loss are still unclear. We combined the use of stem cell-derived inner ear organoids with single-cell RNA sequencing to investigate the role of TMPRSS3. Defective Tmprss3 leads to hair cell apoptosis without altering the development of hair cells and the formation of the mechanotransduction apparatus. Prior to degeneration, Tmprss3-KO hair cells demonstrate reduced numbers of BK channels and lower expressions of genes encoding calcium ion-binding proteins, suggesting a disruption in intracellular homeostasis. A proteolytically active TMPRSS3 was detected on cell membranes in addition to ER of cells in inner ear organoids. Our in vitro model recapitulated salient features of genetically associated inner ear abnormalities and will serve as a powerful tool for studying inner ear disorders

    A Close Association of RyRs with Highly Dense Clusters of Ca2+-activated Cl− Channels Underlies the Activation of STICs by Ca2+ Sparks in Mouse Airway Smooth Muscle

    Get PDF
    Ca2+ sparks are highly localized, transient releases of Ca2+ from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca2+ sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca2+-activated K+ channels, and also gate Ca2+-activated Cl− (Cl(Ca)) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca2+ sparks is well understood, little information is available on how Ca2+ sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl(Ca) channels in spark sites in airway myocytes from mouse. Ca2+ sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca2+ current underlying a Ca2+ spark (ICa(spark)), with an appropriate correction for endogenous fixed Ca2+ buffer, which was characterized by flash photolysis of NPEGTA. We found that ICa(spark) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca2+ sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the ICa(spark) by less than 3 ms, and its rising phase matches the duration of the ICa(spark). We further determined that Cl(Ca) channels on average are exposed to a [Ca2+] of 2.4 μM or greater during Ca2+ sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca2+] produced by a reaction-diffusion simulation with measured ICa(spark). Finally we estimated that the number of Cl(Ca) channels localized in Ca2+ spark sites could account for all the Cl(Ca) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl(Ca) channels in Ca2+ spark sites localize near to each other, and, moreover, Cl(Ca) channels concentrate in an area with a radius of ∼600 nm, where their density reaches as high as 300 channels/μm2. This model reveals that Cl(Ca) channels are tightly controlled by Ca2+ sparks via local Ca2+ signaling

    Enhancement of Memory-Related Long-Term Facilitation by ApAF, a Novel Transcription Factor that Acts Downstream from Both CREB1 and CREB2

    Get PDF
    AbstractThe memory for sensitization of the gill withdrawal reflex in Aplysia is reflected in facilitation of the monosynaptic connection between the sensory and motor neurons of the reflex. The switch from short- to long-term facilitation requires activation of CREB1, derepression of ApCREB2, and induction of ApC/EBP. In search for genes that act downstream from CREB1, we have identified a transcription activator, ApAF, which is stimulated by protein kinase A and can dimerize with both ApC/EBP and ApCREB2. ApAF is necessary for long-term facilitation induced by five pulses of serotonin, by activation of CREB1, or by derepression of ApCREB2. Overexpression of ApAF enhances the long-term facilitation further. Thus, ApAF is a candidate memory enhancer gene downstream from both CREB1 and ApCREB2
    corecore