58 research outputs found

    The adoptr Package: Adaptive Optimal Designs for Clinical Trials in R

    Get PDF
    Even though adaptive two-stage designs with unblinded interim analyses are becoming increasingly popular in clinical trial designs, there is a lack of statistical software to make their application more straightforward. The package adoptr fills this gap for the common case of two-stage one- or two-arm trials with (approximately) normally distributed outcomes. In contrast to previous approaches, adoptr optimizes the entire design upfront which allows maximal efficiency. To facilitate experimentation with different objective functions, adoptr supports a flexible way of specifying both (composite) objective scores and (conditional) constraints by the user. Special emphasis was put on providing measures to aid practitioners with the validation process of the package

    A review of Bayesian perspectives on sample size derivation for confirmatory trials

    Full text link
    Sample size derivation is a crucial element of the planning phase of any confirmatory trial. A sample size is typically derived based on constraints on the maximal acceptable type I error rate and a minimal desired power. Here, power depends on the unknown true effect size. In practice, power is typically calculated either for the smallest relevant effect size or a likely point alternative. The former might be problematic if the minimal relevant effect is close to the null, thus requiring an excessively large sample size. The latter is dubious since it does not account for the a priori uncertainty about the likely alternative effect size. A Bayesian perspective on the sample size derivation for a frequentist trial naturally emerges as a way of reconciling arguments about the relative a priori plausibility of alternative effect sizes with ideas based on the relevance of effect sizes. Many suggestions as to how such `hybrid' approaches could be implemented in practice have been put forward in the literature. However, key quantities such as assurance, probability of success, or expected power are often defined in subtly different ways in the literature. Starting from the traditional and entirely frequentist approach to sample size derivation, we derive consistent definitions for the most commonly used `hybrid' quantities and highlight connections, before discussing and demonstrating their use in the context of sample size derivation for clinical trials

    Imputation of Ordinal Outcomes: A Comparison of Approaches in Traumatic Brain Injury.

    Get PDF
    Loss to follow-up and missing outcomes data are important issues for longitudinal observational studies and clinical trials in traumatic brain injury. One popular solution to missing 6-month outcomes has been to use the last observation carried forward (LOCF). The purpose of the current study was to compare the performance of model-based single-imputation methods with that of the LOCF approach. We hypothesized that model-based methods would perform better as they potentially make better use of available outcome data. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (n = 4509) included longitudinal outcome collection at 2 weeks, 3 months, 6 months, and 12 months post-injury; a total of 8185 Glasgow Outcome Scale extended (GOSe) observations were included in the database. We compared single imputation of 6-month outcomes using LOCF, a multiple imputation (MI) panel imputation, a mixed-effect model, a Gaussian process regression, and a multi-state model. Model performance was assessed via cross-validation on the subset of individuals with a valid GOSe value within 180 ± 14 days post-injury (n = 1083). All models were fit on the entire available data after removing the 180 ± 14 days post-injury observations from the respective test fold. The LOCF method showed lower accuracy (i.e., poorer agreement between imputed and observed values) than model-based methods of imputation, and showed a strong negative bias (i.e., it imputed lower than observed outcomes). Accuracy and bias for the model-based approaches were similar to one another, with the multi-state model having the best overall performance. All methods of imputation showed variation across different outcome categories, with better performance for more frequent outcomes. We conclude that model-based methods of single imputation have substantial performance advantages over LOCF, in addition to providing more complete outcome data

    A weighted combined effect measure for the analysis of a composite time-to-first-event endpoint with components of different clinical relevance

    Get PDF
    Composite endpoints combine several events within a single variable, which increases the number of expected events and is thereby meant to increase the power. However, the interpretation of results can be difficult as the observed effect for the composite does not necessarily reflect the effects for the components, which may be of different magnitude or even point in adverse directions. Moreover, in clinical applications, the event types are often of different clinical relevance, which also complicates the interpretation of the composite effect. The common effect measure for composite endpoints is the all-cause hazard ratio, which gives equal weight to all events irrespective of their type and clinical relevance. Thereby, the all-cause hazard within each group is given by the sum of the cause-specific hazards corresponding to the individual components. A natural extension of the standard all-cause hazard ratio can be defined by a weighted all-cause hazard ratio where the individual hazards for each component are multiplied with predefined relevance weighting factors. For the special case of equal weights across the components, the weighted all-cause hazard ratio then corresponds to the standard all-cause hazard ratio. To identify the cause-specific hazard of the individual components, any parametric survival model might be applied. The new weighted effect measure can be tested for deviations from the null hypothesis by means of a permutation test. In this work, we systematically compare the new weighted approach to the standard all-cause hazard ratio by theoretical considerations, Monte-Carlo simulations, and by means of a real clinical trial example

    Cryoballoon vs. open irrigated radiofrequency ablation for paroxysmal atrial fibrillation: long-term FreezeAF outcomes

    Get PDF
    Background: Effective treatment of paroxysmal atrial fibrillation (AF) is essential for reducing the risk of stroke and heart failure. Cryoballoon (CB) ablation has been developed as an alternative to the use of radiofrequency (RF) energy for electrical isolation of the pulmonary veins. Herein, we provide long-term data regarding the efficacy of CB ablation in comparison to RF. Methods: FreezeAF was a randomised non-inferiority study comparing CB ablation with RF ablation for the treatment of patients with drug-refractory paroxysmal AF. Procedural success for the long-term follow-up (30 months) was defined as freedom from AF with an absence of persistent complications. Results: Of the 315 patients that were randomised and received catheter ablation, 292 (92.7%) completed the 30-month follow-up (147 in the RF group and 145 in the CB group). The baseline characteristics of the RF and CB groups were similar. Single-procedure success was achieved by 40% of patients in the RF group and 42% of the CB group (p < 0.001 for non-inferiority). When including re-do procedures in the analysis, the multiple procedure success rate was 72% in the RF group and 76% in the CB group. Conclusion: The data provide long-term evidence that CB ablation is non-inferior to RF ablation, with high proportions of patients reporting freedom from AF 30 months after the index procedure. Trial registration: ClinicalTrials.gov Identifier: NCT00774566; first registered October 16, 2008; first patient included October 20, 2008

    Risk factors associated with severe hospital burden of COVID-19 disease in Regione Lombardia: a cohort study.

    Get PDF
    BACKGROUND: Understanding the risk factors associated with hospital burden of COVID-19 is crucial for healthcare planning for any future waves of infection. METHODS: An observational cohort study is performed, using data on all PCR-confirmed cases of COVID-19 in Regione Lombardia, Italy, during the first wave of infection from February-June 2020. A multi-state modelling approach is used to simultaneously estimate risks of progression through hospital to final outcomes of either death or discharge, by pathway (via critical care or not) and the times to final events (lengths of stay). Logistic and time-to-event regressions are used to quantify the association of patient and population characteristics with the risks of hospital outcomes and lengths of stay respectively. RESULTS: Risks of severe outcomes such as ICU admission and mortality have decreased with month of admission (for example, the odds ratio of ICU admission in June vs March is 0.247 [0.120-0.508]) and increased with age (odds ratio of ICU admission in 45-65 vs 65 + age group is 0.286 [0.201-0.406]). Care home residents aged 65 + are associated with increased risk of hospital mortality and decreased risk of ICU admission. Being a healthcare worker appears to have a protective association with mortality risk (odds ratio of ICU mortality is 0.254 [0.143-0.453] relative to non-healthcare workers) and length of stay. Lengths of stay decrease with month of admission for survivors, but do not appear to vary with month for non-survivors. CONCLUSIONS: Improvements in clinical knowledge, treatment, patient and hospital management and public health surveillance, together with the waning of the first wave after the first lockdown, are hypothesised to have contributed to the reduced risks and lengths of stay over time

    A genome-wide association study of outcome from traumatic brain injury

    Get PDF
    Background Factors such as age, pre-injury health, and injury severity, account for less than 35% of outcome variability in traumatic brain injury (TBI). While some residual outcome variability may be attributable to genetic factors, published candidate gene association studies have often been underpowered and subject to publication bias.& nbsp;Methods We performed the first genome-and transcriptome-wide association studies (GWAS, TWAS) of genetic effects on outcome in TBI. The study population consisted of 5268 patients from prospective European and US studies, who attended hospital within 24 h of TBI, and satisfied local protocols for computed tomography.& nbsp;Findings The estimated heritability of TBI outcome was 0.26. GWAS revealed no genetic variants with genome-wide significance (p < 5 x 10(-8)), but identified 83 variants in 13 independent loci which met a lower pre-specified sub-genomic statistical threshold (p < 10(-5)). Similarly, none of the genes tested in TWAS met tissue-wide significance. An exploratory analysis of 75 published candidate variants associated with 28 genes revealed one replicable variant (rs1800450 in the MBL2 gene) which retained significance after correction for multiple comparison (p = 5.24 x 10(-4)).& nbsp;Interpretation While multiple novel loci reached less stringent thresholds, none achieved genome-wide significance. The overall heritability estimate, however, is consistent with the hypothesis that common genetic variation substantially contributes to inter-individual variability in TBI outcome. The meta-analytic approach to the GWAS and the availability of summary data allows for a continuous extension with additional cohorts as data becomes available.& nbsp;Copyright (C)& nbsp;2022 Published by Elsevier B.V.Peer reviewe
    corecore