406 research outputs found

    Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    Get PDF
    Chamber studies of glyoxal uptake onto ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions. Glyoxal monomers and oligomers were the dominant organic compounds formed under the conditions of this study; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. We have identified 1H-imidazole-2-carboxaldehyde as one C-N product. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active photochemistry was found to occur within aerosol during irradiated experiments. Carboxylic acids and organic esters were identified within the aerosol. An organosulphate, which had been previously assigned as glyoxal sulphate in ambient samples and chamber studies of isoprene oxidation, was observed only in the irradiated experiments. Comparison with a laboratory synthesized standard and chemical considerations strongly suggest that this organosulphate is glycolic acid sulphate, an isomer of the previously proposed glyoxal sulphate. Our study shows that reversibility of glyoxal uptake should be taken into account in SOA models and also demonstrates the need for further investigation of C-N compound formation and photochemical processes, in particular organosulphate formation

    Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions

    Get PDF
    We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene

    Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation

    Get PDF
    The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal-driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models

    Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning

    Get PDF
    Machine learning (ML) models are becoming a meaningful tool for modeling air pollutant concentrations. ML models are capable of learning and modeling complex nonlinear interactions between variables, and they require less computational effort than chemical transport models (CTMs). In this study, we used gradient-boosted tree (GBT) and multi-layer perceptron (MLP; neural network) algorithms to model near-surface nitrogen dioxide (NO2) and ozone (O3) concentrations over Germany at 0.1∘ spatial resolution and daily intervals. We trained the ML models using TROPOspheric Monitoring Instrument (TROPOMI) satellite column measurements combined with information on emission sources, air pollutant precursors, and meteorology as feature variables. We found that the trained GBT model for NO2 and O3 explained a major portion of the observed concentrations (R2=0.68–0.88 and RMSE=4.77–8.67 µg m−3; R2=0.74–0.92 and RMSE=8.53–13.2 µg m−3, respectively). The trained MLP model performed worse than the trained GBT model for both NO2 and O3 (R2=0.46–0.82 and R2=0.42–0.9, respectively). Our NO2 GBT model outperforms the CAMS model, a data-assimilated CTM but slightly underperforms for O3. However, our NO2 and O3 ML models require less computational effort than CTM. Therefore, we can analyze people's exposure to near-surface NO2 and O3 with significantly less effort. During the study period (30 April 2018 and 1 July 2021), it was found that around 36 % of people lived in locations where the World Health Organization (WHO) NO2 limit was exceeded for more than 25 % of the days during the study period, while 90 % of the population resided in areas where the WHO O3 limit was surpassed for over 25 % of the study days. Although metropolitan areas had high NO2 concentrations, rural areas, particularly in southern Germany, had high O3 concentrations. Furthermore, our ML models can be used to evaluate the effectiveness of mitigation policies. Near-surface NO2 and O3 concentration changes during the 2020 COVID-19 lockdown period over Germany were indeed reproduced by the GBT model, with meteorology-normalized near-surface NO2 having significantly decreased (by 23±5.3 %) and meteorology-normalized near-surface O3 having slightly increased (by 1±4.6 %) over 10 major German metropolitan areas when compared to 2019. Finally, our O3 GBT model is highly transferable to neighboring countries and locations where no measurements are available (R2=0.87–0.94), whereas our NO2 GBT model is moderately transferable (R2=0.32–0.64).</p

    Photooxidation of 2-methyl-3-buten-2-ol (MBO) as a potential source of secondary organic aerosol

    Get PDF
    2-Methyl-3-buten-2-ol (MBO) is an important biogenic hydrocarbon emitted in large quantities by pine forests. Atmospheric photooxidation of MBO is known to lead to oxygenated compounds, such as glycolaldehyde, which is the precursor to glyoxal. Recent studies have shown that the reactive uptake of glyoxal onto aqueous particles can lead to formation of secondary organic aerosol (SOA). In this work, MBO photooxidation under high- and low-NO_x conditions was performed in dual laboratory chambers to quantify the yield of glyoxal and investigate the potential for SOA formation. The yields of glycolaldehyde and 2-hydroxy-2-methylpropanal (HMPR), fragmentation products of MBO photooxidation, were observed to be lower at lower NO_x concentrations. Overall, the glyoxal yield from MBO photooxidation was 25% under high-NO_x and 4% under low-NO_x conditions. In the presence of wet ammonium sulfate seed and under high-NO_x conditions, glyoxal uptake and SOA formation were not observed conclusively, due to relatively low (<30 ppb) glyoxal concentrations. Slight aerosol formation was observed under low-NO_x and dry conditions, with aerosol mass yields on the order of 0.1%. The small amount of SOA was not related to glyoxal uptake, but is likely a result of reactions similar to those that generate isoprene SOA under low-NO_x conditions. The difference in aerosol yields between MBO and isoprene photooxidation under low-NO_x conditions is consistent with the difference in vapor pressures between triols (from MBO) and tetrols (from isoprene). Despite its structural similarity to isoprene, photooxidation of MBO is not expected to make a significant contribution to SOA formation

    Revisiting the reaction of dicarbonyls in aerosol proxy solutions containing ammonia: the case of butenedial

    Get PDF
    Reactions in aqueous solutions containing dicarbonyls (especially the α-dicarbonyls methylglyoxal, glyoxal, and biacetyl) and reduced nitrogen (NHx) have been studied extensively. It has been proposed that accretion reactions from dicarbonyls and NHx could be a source of particulate matter and brown carbon in the atmosphere and therefore have direct implications for human health and climate. Other dicarbonyls, such as the 1,4-unsaturated dialdehyde butenedial, are also produced from the atmospheric oxidation of volatile organic compounds, especially aromatics and furans, but their aqueous-phase reactions with NHx have not been characterized. In this work, we determine a pH-dependent mechanism of butenedial reactions in aqueous solutions with NHx that is compared to α-dicarbonyls, in particular the dialdehyde glyoxal. Similar to glyoxal, butenedial is strongly hydrated in aqueous solutions. Butenedial reaction with NHx also produces nitrogen-containing rings and leads to accretion reactions that form brown carbon. Despite glyoxal and butenedial both being dialdehydes, butenedial is observed to have three significant differences in its chemical behavior: (1) as previously shown, butenedial does not substantially form acetal oligomers, (2) the butenedial/OH− reaction leads to light-absorbing compounds, and (3) the butenedial/NHx reaction is fast and first order in the dialdehyde. Building off of a complementary study on butenedial gas-particle partitioning, we suggest that the behavior of other reactive dialdehydes and dicarbonyls may not always be adequately predicted by α-dicarbonyls, even though their dominant functionalities are closely related. The carbon skeleton (e.g., its hydrophobicity, length, and bond structure) also governs the fate and climate-relevant properties of dicarbonyls in the atmosphere. If other dicarbonyls behave like butenedial, their reaction with NHx could constitute a regional source of brown carbon to the atmosphere.</p

    Mechanisms of Dendrites Occurrence during Crystallization: Features of the Ice Crystals Formation

    Full text link
    Dendrites formation in the course of crystallization presents very general phenomenon, which is analyzed in details via the example of ice crystals growth in deionized water. Neutral molecules of water on the surface are combined into the double electric layer (DEL) of oriented dipoles; its field reorients approaching dipoles with observable radio-emission in the range of 150 kHz. The predominant attraction of oriented dipoles to points of gradients of this field induces dendrites growth from them, e.g. formation of characteristic form of snowflakes at free movement of clusters through saturated vapor in atmosphere. The constant electric field strengthens DELs' field and the growth of dendrites. Described phenomena should appear at crystallization of various substances with dipole molecules, features of radio-emission can allow the monitoring of certain processes in atmosphere and in technological processes. Crystallization of particles without constant moments can be stimulated by DELs of another nature with attraction of virtual moments of particles to gradients of fields and corresponding dendrites formation.Comment: 6 page

    Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    Get PDF
    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments

    Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    Get PDF
    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19–21 June, Period B on 30 June and 1–2 July, Period C on 3–5 July, and Period D on 6–7 July to represent the first (Period A) and second (Periods B, C, and D) halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84), aerosol liquid water (R2 = 0.65), RH (R2 = 0.39), and aerosol nitrate (R2 = 0.66). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors, determined from application of positive matrix factorization analysis on the aerosol mass spectrometer observations of the submicron non-refractory organic particle composition, suggested that the WSOC differed in the two halves of the study (Period A WSOC vs. OOA-2 R2 = 0.83 and OOA-4 R2 = 0.04, whereas Period C WSOC vs. OOA-2 R2 = 0.03 and OOA-4 R2 = 0.64). OOA-2 had a high O ∕ C (oxygen ∕ carbon) ratio of 0.77, providing evidence that aqueous processing was occurring during Period A. Key factors of local aqSOA production during Period A appear to include air mass stagnation, which allows aqSOA precursors to accumulate in the region; the formation of substantial local particulate nitrate during the overnight hours, which enhances water uptake by the aerosol; and the presence of significant amounts of ammonia, which may contribute to ammonium nitrate formation and subsequent water uptake and/or play a more direct role in the aqSOA chemistry
    corecore