1,776 research outputs found

    Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment

    Full text link
    In the PS209 experiments at CERN two kinds of measurements were performed: the in-beam measurement of X-rays from antiprotonic atoms and the radiochemical, off-line determination of the yield of annihilation products with mass number A_t -1 (less by 1 than the target mass). Both methods give observables which allows to study the peripheral matter density composition and distribution.Comment: LaTeX (espcrc1 style), 6 pages, 3 EPS figures, 1 table, Proceedings of the Sixth Biennal Conference on Low-Energy Antiproton Physics LEAP 2000, Venice, Ital

    Neutron density distributions from antiprotonic 208Pb and 209Bi atoms

    Get PDF
    The X-ray cascade from antiprotonic atoms was studied for 208Pb and 209Bi. Widths and shifts of the levels due to the strong interaction were determined. Using modern antiproton-nucleus optical potentials the neutron densities in the nuclear periphery were deduced. Assuming two parameter Fermi distributions (2pF) describing the proton and neutron densities the neutron rms radii were deduced for both nuclei. The difference of neutron and proton rms radii /\r_np equal to 0.16 +-(0.02)_{stat} +- (0.04)_{syst} fm for 208Pb and 0.14 +- (0.04)_{stat} +- (0.04)_{syst} fm for 209Bi were determined and the assigned systematic errors are discussed. The /\r_np values and the deduced shapes of the neutron distributions are compared with mean field model calculations.Comment: 22 pages, 8 tables, 15 figure

    Discharge probability studies with GEM detectors

    Get PDF

    Readout of GEM Detectors Using the Medipix2 CMOS Pixel Chip

    Get PDF
    We have operated a Medipix2 CMOS readout chip, with amplifying, shaping and charge discriminating front-end electronics integrated on the pixel-level, as a highly segmented direct charge collecting anode in a three-stage gas electron multiplier (Triple-GEM) to detect the ionization from 55^{55}Fe X-rays and electrons from 106^{106}Ru. The device allows to perform moderate energy spectroscopy measurements (20 % FWHM at 5.9 keV XX-rays) using only digital readout and two discriminator thresholds. Being a truly 2D-detector, it allows to observe individual clusters of minimum ionizing charged particles in Ar/CO2Ar/CO_2 (70:30) and He/CO2He/CO_2 (70:30) mixtures and to achieve excellent spatial resolution for position reconstruction of primary clusters down to ∌50ÎŒm\sim 50 \mu m, based on the binary centroid determination method.Comment: 18 pages, 14 pictures. submitted to Nuclear Instruments and Methods in Physics Research

    K2 observations of pulsating subdwarf B stars: Analysis of EPIC 203948264 observed during Campaign 2

    Get PDF
    We apply asteroseismic tools to the newly discovered subdwarf B (sdB) pulsator EPIC 203948264, observed with K2, the two-gyro mission of the Kepler space telescope. A time series analysis of the 83-d Campaign 2 (C2) short-cadence data set has revealed a g-mode pulsation spectrum with 22 independent pulsation periods between 0.5 and 2.8 h. Most of the pulsations fit the asymptotic period sequences for ℓ = 1 or 2, with average period spacings of 261.3 ± 1.1 and 151.18 ± 0.37 s, respectively. The pulsation amplitudes are below 0.77 ppt and vary over time. We include updated spectroscopic parameters, including atmospheric abundances and radial velocities, which give no indication for binarity in this star. We detect one possible low-amplitude multiplet, which corresponds to a rotation period of 46 d or longer. EPIC 203948264 appears as another slowly rotating sdB star

    Ion backflow studies with a triple GEM detector

    Get PDF

    Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B

    Get PDF
    The results of five years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about 20 * 20 cm2 each. The detector is based on microstrip gas counters (MSGCs) with diamond like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000.Comment: 29 pages, 22 figure

    Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    Get PDF
    Abstract A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with "slow" signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∌3 ÎŒs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5–6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate

    Strong interaction and E2 effect in even- A antiprotonic Te atoms

    Get PDF
    The x-ray cascade from antiprotonic atoms was studied for Te-122, Te-124, Te-126, Te-128, and Te-130. Widths and shifts due to the strong interaction were deduced for several levels. The E2 nuclear resonance effect was observed in all investigated nuclei. In Te-130 the E2 resonance allowed to determine level widths and shifts of the LS-split deeply bound (n,l)=(6,5) state, otherwise unobservable. The measured level widths and shifts, corrected for the E2-resonance effect, were used to investigate the nucleon density in the nuclear periphery. The deduced neutron distributions are compared with results of the previously introduced radiochemical method and with Hartree-Fock-Bogoliubov model calculations

    Fast Photon Detection for Particle Identification with COMPASS RICH-1

    Get PDF
    Particle identification at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 10610^6 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30 June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption of Fig.
    • 

    corecore