32 research outputs found

    IR Sensor Based on Low Bandgap Organic Photodiode With Up-Converting Phosphor

    Get PDF

    Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    Get PDF
    The lamination of OPV modules to corrugated roof cladding has been undertaken. The 3-dimensional form of the cladding provides three advantages for outdoor OPV deployment; firstly the ‘footprint’ of the solar cell is reduced, which leads to ∌10% improved power conversion (PCE) efficiency per unit area. Secondly, the oblique angle performance is enhanced, leading to increased output in the early morning and evening. Indoor characterisation showed a 9-fold enhancement in efficiency was obtainable, when compared to a flat module. Thirdly, an improvement in performance under diffuse lighting conditions was measured, when compared to a flat module. The average daily yield of the 3D module was 17–29% higher than a flat module, with higher relative enhancements observed on cloudier days. Geographically, the 3D module appears to be well-suited to countries with a high latitude, due to the enhanced diffuse light levels and the fact that tilting the module in both ‘latitude’ and ‘longitude’ directions away from normal, leads to the best achievable enhancement in solar cell performance. The approach set out in this paper could yield a product that has profound advantages over existing BIPV products and is potentially applicable to other flexible inorganic solar cell technologies

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π∓{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Religionsfrihetens begrÀnsningar : En komparativ studie mellan tvÄ rÀttsfall i ECHR med Europakonventionen artikel 9 som utgÄngspunkt

    Get PDF
    The proof of concept of using luminescent down shifting (LDS) layers as alternative UV filters for P3HT:PCBM OPVs is demonstrated using a lanthanide-based metal complex. The results are verified using a combination of indoor light soaking, with single cell devices, and outdoor performance monitoring, using a 16-cell monolithically connected OPV module. By applying the LDS layer, a ~5% relative enhancement in photocurrent is observed for both sets of devices. More significantly, indoor light soaking tests on single cell devices without encapsulation showed an 850% enhancement in the measured half-life (T50%). The OPV modules were encapsulated and tested for outdoor stability over a 70 day period in the Negev desert, Israel. The modules made with the LDS filter are shown to match the stability of those made with a commercial UV filter and outperform the modules with no filter applied, with a 51% enhancement in the measured stability (T75%). Significantly, the work provides clear experimental evidence that the LDS layer can act as a UV filter in OPVs without compromising the efficiency of the solar cell, thus providing an added benefit over commercial UV filters

    sandflyDST: a dynamic web-based decision support tool for the morphological identification of sandflies present in Anatolia and mainland Europe, and user study

    No full text
    WOS: 000387023700009PubMed ID: 27339389Species identification of sandflies is mainly performed according to morphological characters using classical written identification keys. This study introduces a new web-based decision support tool (sandflyDST) for guiding the morphological identification of sandfly species present in Anatolia and mainland Europe and classified in the Phlebotomus and Sergentomyia genera (both: Diptera: Psychodidae). The current version of the tool consists of 111 questions and 36 drawings obtained from classical written keys, and 107 photographs for the quick and easy identification of 26 species of the genus Phlebotomus and four species of the genus Sergentomyia. The tool guides users through a decision tree using yes/no questions about the morphological characters of the specimen. The tool was applied by 30 individuals, who then completed study questionnaires. The results of subsequent analyses indicated that the usability ((x) over bar (SUS Score) = 75.4) and users' level of appreciation (86.6%) of the tool were quite high; almost all of the participants considered recommending the tool to others. The tool may also be useful in training new entomologists and maintaining their level of expertise. This is a dynamic tool and can be improved or upgraded according to feedback. The tool is now available online at http://parasitology.ege.edu.tr/sandflyDST/index.php
    corecore