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Abstract 

We report the fabrication and characterisation of an organic- inorganic hybrid Photodiode (HPD) 

based on PCPDTBT and Zinc Oxide (ZnO) photoactive layers. The main benefit of using these 

materials is that multi spectral light sensing from the UV through to the Near Infrared is achieved, 

encompassing wavelengths ~350nm-870nm. To our knowledge, this is one of the widest range 

responses reported for an inorganic-organic hybrid photodiode. The evaluation of the technology 

shows the devices exhibit one of the lowest levels of dark currents reported for a HPD, but some 

limitations exist due to a low on-off ratio and non-linearity of the responsivity at low incident power. 

The stability of devices made with PCPDTBT:ZnO active layers is compared to more commonly 

reported P3HT:ZnO devices in dark and it is shown that using PCPDTBT substantially improves 

lifetime.   

 

Highlights 

- Wide photoresponse from UV to the NIR is achieved 

- Device exhibits low dark current and high rectification ratio for a hybrid device 

- Responsivity is measured and shown to be linear for incident power> 0.04W/cm2 

- Improved lifetime observed with PCPDTBT active layer, when compared to P3HT-based 

devices  
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1. Introduction 

Organic or hybrid photodiodes (HPDs) using metal oxide acceptor materials could have a number of 

advantages over the inorganic technologies, including potentially low costs, solution processability 

and flexibility, which could enable photodiodes to be placed onto non-flat surfaces [1,2]. Previous 

reports of HPDs possess a reasonable on/off ratio of photocurrent during illumination when 

compared to the dark current (typically>2 orders of magnitudes) [3]. Another major advantage is 

that the absorption profile can be ‘tuned’ to absorb most visible wavelengths by altering the 

semiconductor inside the active layer within the active layer [4].  

In recent years, Zinc Oxide (ZnO) has been widely studied due to its intrinsic properties 

suitable for optoelectronic applications such as in hybrid devices with organic semiconductors such 

as solar cells and photodiodes [5]. With a wide direct bandgap of ~3.4eV at room temperature, ZnO 

has been regarded as an excellent semiconductor material for UV detection and possesses an 

absorption profile that compliments many organic semiconductors. ZnO can be easily deposited at 

room- or relatively low temperatures to form thin layers by standard techniques such as sputtering 

[6], atomic-layer deposition [7] and pulsed-laser deposition [8].  The electron mobility is generally 

limited by surface roughness and carrier scatterings at grain boundaries; however, the electron 

mobility in ZnO has been demonstrated to reach up to 110cm2/Vs, when using an elevated substrate 

temperature during the growth step [9]. In most cases where ZnO is deposited onto substrates at 

room temperature, the mobility is measured to be around 1-5 cm 2/Vs [10]. This value still remains 

much higher than many organic materials which are used as the acceptor material in organic 

photodiodes. ZnO has also been used widely for the development of hybrid photovoltaics or 

photodiodes (HPDs). In photovoltaics, performances up to 0.11% have been reported for ‘planar’ 

devices, where the ZnO is deposited as a flat, uniform surface and up to 0.76% for devices made with 

ZnO nanowires, which create an interdigitated interface with the organic layer [11]. In addition, up 

to 2.0% has been reported for devices using ZnO nano-particles/crystals in a bulk-heterojunction 

configuration with an donor material such as Poly(3-hexylthiophene-2,5-diyl) (P3HT) [11]. Most work 

on hybrid devices has focused on photovoltaics and utilised organic semiconductors such as 

polyfluorene [12], P3HT [11] or polyaniline [13].  Whilst the performance as photovoltaics is low, the 

potential as photo-diodes or detectors has not been fully investigated.  

In this paper, the fabrication, development and characterisation of ZnO HPDs is reported 

using the polymer Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-



4,7(2,1,3-benzothiadiazole)] (PCPDTBT). Devices are shown to possess one of the lowest levels of 

dark current for a HPD, though the on-off ratio is limited due to the low photoresponse of the 

device. However, the main benefit of using these materials to make photodiodes is that multi 

spectral light sensing is possible from the UV through to the Near Infrared, encompassing 

wavelengths ~350nm-870nm. To our knowledge, this is one of the widest response ranges reported 

for a Hybrid-photodiode. It is also one of the first reports of using a low band gap co-polymer for a 

hybrid device. It is shown that using PCPDTBT ensures wide photoresponse, and also enhances air 

stability when compared to HPDs manufactured using more commonly used materials such as P3HT.  

 

2. Experimental 

The structure of the OPD device is shown in the inset of Figure 1(a). OPD devices were initially 

prepared in a clean room environment using an 80nm thick indium tin oxide (ITO) coated glass 

substrates (Rs = 16 Ω/square) that were first cleaned using deionised water, acetone and isopropanol 

in an ultrasonic cleaner, then treated in a UV-ozone reactor. For this work, a bilayer structure was 

used which is the simplest device geometry for a HPD. In this device architecture, a layer of ZnO is 

first deposited onto the electrode substrate, followed by the deposition of a donor organic 

semiconductor and finally by a top electrode. 

A 25nm layer of Zinc Oxide (ZnO) was deposited using sputtering (Edwards) at a rate of 1Å/s 

and annealed at 250°C. The donor material used was Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta 

[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), although in section 4, Poly-(3-

hexylthiophene-2,5-diyl) (P3HT) was also used. These were prepared and mixed with chlorobenzene 

solvent with a concentration of 15mg/mL, with thickness of 30nm. Samples were transferred into a 

nitrogen atmosphere glovebox ([O2], [H2O] < 1ppm), where the donor material was applied by spin-

casting (1250rpm for 60 seconds). Both the ZnO and donor material thickness was optimised. No 

annealing of the PCPDTBT was conducted, but P3HT was annealed at 140°C. Finally, thermal 

evaporation of the cathode was undertaken through a shadow mask to define the device area. This 

consisted of a 10 nm layer of molybdenum trioxide (MoO3) and 200nm of silver (Ag). The 

corresponding energy band diagram of the device is shown in Figure 1(b). The absorption profile of 

the PCPDTBT and ZnO is shown in Figure 1(c). 

The photoresponse studies were made with a Keithley 2600 source-measure unit (SMU) under 

the excitation of a Newport spectra solar simulator and a calibrated reference cell from Newport 

spectra. Responsivity measurements were made by illuminating the top surface of the OPD at normal 



incidence. The OPD response was measured in photoconductive mode, so an external reverse bias is 

applied via a Keithley 2600 SMU and the current was measured using either the SMU or a lock-in 

amplifier with an optically chopped input signal. 

 

3. Photodiode characterisation 

Figure 2 shows the dark current and performance under 100mW/cm2 (AM1.5G) incident power for 

the fabricated PCPDPTBT:ZnO HPD. The solar cell performance under AM1.5G illumination is low, 

with a Power Conversion Efficiency (PCE) of 0.070%. This is to be expected owing to the planar 

interface, which usually leads to lower performances than devices based on ZnO nanocrystals or 

vertically aligned ZnO nanowires, because of the smaller interfacial area between the polymer and 

acceptor [11]. However, this does compare closely with the ‘record’ efficiency for a planar HPD. 

Based on the data seen in Figure 2, the dark current of the PCPDTBT:ZnO HPD at 0V bias is 1.71x10-

2mA/cm2 and the device exhibits an on-off ratio of ~150 at 100mW/cm2. Minimization of dark 

current is imperative, as this limits the minimum detectable power and also the dynamic range of 

the HPD, as the on/off ratio can be enhanced by reducing the dark current [15]. When compared to 

other HPD devices in the literature, the HPD in Figure 2 exhibits relatively low dark current [16]. The 

likely reason for are twofold; firstly, the overall charge transfer through the device is reduced, as a 

result of the low interfacial area, as previous HPDs tend to use non-planar surfaces. And secondly, 

the recombination of charge carriers at ITO electrode is reduced due to the larger potential barrier 

of the ZnO valence band (many previous reports use Titanium oxide n-type layers). In addition to the 

lower dark current, using ZnO as the acceptor material enables photocurrent generation into the UV 

region, giving the HPD a wider optical dynamic range. In this device,  the UV response will be in 

practice limited by the borosilicate glass substrate, which filters out light below 340nm, but ZnO 

absorbs strongly below 340nm, suggesting a UV transparent substrate such as sapphire will increase 

the range of response of this device even further.  Below 380nm, PCPDTBT does not absorb, implying 

that any UV part of the spectrum would be absorbed only by the ZnO layer. Figure 1(c) shows the 

absorption profile of both the ZnO and PCPDTBT, layers demonstrating the wide absorption 

properties.  

To study the influence under different light intensities, we recorded J-V characteristics under 

different illumination power from 25 to 100mW/cm2. Devices were measured straight after 

exposure and illumination was removed in-between measurements. The responsivity of a 

photodiode is defined as a ratio of output photocurrent (IPD) from the OPD to the incident light 



power (P) from the light source, or   PIR PD / .  Shown in Figure 3 is the responsivity and 

photodiode current as a function of incident light intensity (PIN) using AM1.5G illumination under -1V 

bias. The behaviour is linear, except at lower intensities. Below 40mW/cm2, the device exhibits a 

decrease in IPD, though for intensities greater than 40mW/cm2, IPD is directly proportional to incident 

power. This low light behaviour supports the view of other publications, which explained the effect 

due to electron trap saturation and limited charge transport due to the electron/hole mobility of the 

ZnO and PCPDTBT, respectively [17].  

Overlaid on Figure 3 is the rectification ratio of the HPD as a function of incident power, 

obtained from plotting the diode equation under illumination and dark conditions. Under dark 

conditions, the rectification ratio is measured at 75 and at 100mW/cm2 was measured at 46. 

Although the parameter is not regularly reported for HPDs, the rectification ratio at 100mW/cm2 

under bias of 1V is higher than many previous reports for HPDs.  To obtain photodiodes with high 

rectification ratios, efficient charge injection through the PCPDTBT and ZnO layers under forward 

bias is needed. This was achieved by ensuring that the potential barriers between each layer was 

low, so the data supports the view that using an MoO3 hole transport layer and Ag electrode 

minimises this barrier, as ITO-ZnO is already known to form an Ohmic contact [11]. The quality of the 

polymer film can also influence the diode properties and previous reports from this group show that 

the mobility of this polymer is high when using hole only devices, when compared to materials such 

as P3HT  [18]. Rectification ratio appears to increase with reduced intensity, in agreement with other 

reports [16]. It has already been reported that the generation of charge carriers lowers the 

resistance of the bulk via a photo induced doping effect, which contributes to the increased 

rectification ratio as a function of input power [16].   

 

4. Photodiode lifetime  

Whilst there are many advantages to using organic or hybrid photodiodes, as listed in section 1, it is 

important to research the operational lifetime of the photodiodes. In Figure 4(a), the normalized 

photocurrent, measured at –1 V, of PCPDTBT:ZnO HPD is plotted as a function of operating hours. 

This device was non-encapsulated and stored in the dark in between measurements, which were 

conducted approximately every 24 hours. The photocurrent is relatively stable for more than 200 h, 

but decreases exponentially thereafter. The on/off ratio decreases approximately linearly over the 

first 200 hours as a result of increasing dark current. As a comparison, a P3HT:ZnO HPD is shown in 

figure 4 also, which displays considerably worse lifetime. This is an interesting observation; PCPDTBT 



lifetime studies on photodiodes or solar cells have not been extensively reported, however, data 

from out laboratory suggests that PCPDTBT:PC61BM based solar cells exhibit worse stability than 

P3HT:PC61BM based solar cells.  

The degradation mechanism for these types of photodiodes are numerous and complex and 

the difference in stability between the PCPDTBT:ZnO and P3HT:ZnO HPDs could therefore be due to 

a number of reasons. One likely cause is the due to greater UV absorption of PCPDTBT films than in 

P3HT. For PCBM-based solar cells, there is limited UV cut off from PCBM material as it is blended 

with the polymer, however, in these HPDs, the UV will be cut off by the ZnO, so the polymer 

experiences low UV exposure. Therefore, PCPDTBT is less affected by UV degradation in the HPD 

configuration than in PCBM-based solar cells.  

This could also be due to a change in polymer morphology; therefore, the surface 

morphology of the PCPDTBT and P3HT photodiodes were studied using an atomic-force microscope 

(AFM) prior to lifetime testing and after lifetime testing. Data is shown in table 1; a small difference 

in PCPDTBT morphology was observed, with the value of the maximum peak-to-valley fluctuation 

(Zmax) and surface roughness (RA) both increasing by ~25%. This compares to a much greater increase 

in the P3HT morphology (RA increases by 63% and Zmax by 33%).  

The degradation could also be as a result of the ZnO/polymer interface due to ZnO 

degradation, as ZnO is also known to possess a level of instability, in particularly under illumination. 

ZnO films naturally exhibit n-type conductivity and its origin has been discussed in terms of native 

defects, such as oxygen vacancies and zinc interstitials [20,21]. In the case of ZnO, it has been shown 

that oxygen vacancies in ZnO could be quenched upon chemisorbed air/oxygen exposure which 

reduces the carrier concentration, resulting in a field depletion of surface electrons and conduction 

band bending [21, 22]. This has also been reported to increase the dark current of ZnO-based HPDs, 

which would lead to a reduction in on-off ratios in HPDs, as a result of O2 desorption from the ZnO 

[23]. This view supports the data in Figure 4(b), where on-off steadily reduces with time, primarily as 

a result of dark current increase. The AFM measurements in table 1 shows that the PCPDTBT active 

layer possesses much lower surface roughness, which suggests that the PCPDTBT molecules are 

slightly more densely packed, which could slow down the diffusion of oxygen and moisture to the 

ZnO-PCPDTBT interface. This may contribute to the improved stability for the PCPDTBT devices. As 

the P3HT film is more crystalline, the film possesses deeper and wider gaps at the boundaries 

between individual grains. Therefore, the boundaries may also be vulnerable locations for oxygen to 

penetrate through the film [19], leading to degradation of the ZnO interface.  

 

5. Conclusion 



In this paper we have reported a hybrid photodiode made with structure of ITO-ZnO-PCPDTBT-

MoO3-Ag. The benefit of this approach is that multi spectral light sensing is possible from the UV 

through to the Near Infrared, encompassing wavelengths 350nm-870nm, which is one of the widest 

responses observed for an organic or hybrid photodiode. A dark current at 0V bias of 1.71x10-

2mA/cm2 is observed, which leads to a low on-off ratio of ~180 at 100mW/cm2. Devices made with 

PCPDTBT show good air stability, which could be further improved using encapsulation.  
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 Pristine Aged 

 RA ZMAX RA ZMAX 

PCPDTBT:ZnO 0.36 3.89 0.45 4.89 

P3HT:ZnO 0.47 6.99 0.77 9.22 

 

Table 1: Surface roughness (RA) and maximum peak-to-valley fluctuation (Zmax) of pristine and aged 

PCPDTBT:ZnO and P3HT:ZnO devices. The measurements are made on the ‘air’ facing surface i.e. the 

polymer and show that P3HT undergoes a greater variation in morphology with time, than PCPDTBT 

 
 
 
 
 

 



 



Figure 1 (a) Schematic of the photodiode  and (b) Ideal flat band energy diagram for a PCPDTBT:ZnO 
photodiode(assuming ZnO EV = -7.4 eV, EC = -4.2 eV from [10]). Light is incident from the ITO side of 
the device. Other workfunction data is obtained from [14] (c) Absorption profile of PCPDTBT and 
ZnO layers  
 
 
 
 
 
 

 
Figure 2: Current-Voltage characteristics of the PCPDTBT:ZnO photodiode under dark and with 
incident power of 100mW/cm2 
 
 
 



 
Figure 3: Photocurrent (-□-), responsivity (-●-) and diode rectification ratio (-∆-)as a function of input 
power, which was varied from 0.02W/cm2 up to 0.1W/cm2. The responsivity is not constant and is 
shown to decrease at lower intensities.   
 
 
 



 
Figure 4: (a) Photoresponse at VBIAS=-1V and (b) on-off ratio as a function of time as obtained under 
100mW/cm2 irradiation. The applied bias was -1V.  


