1,603 research outputs found
Low-thrust vehicles concept studies
Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were studied in order to provide the required additional data to better compare new, low thrust chemical propulsion systems with other propulsion approaches such as advanced electric systems. Study results indicate that it is cost-effective and least risk to combine the low thrust OTV and stowed spacecraft in a single 65 K shuttle. Mission analysis indicates that there are 25 such missions, starting in 1987. Multiple shuttles (LSS in one, OTV in another) result in a 20% increase in LSS (SBR) diameter over single shuttle launches. Synthesis and optimization of the LSS characteristics and OTV capability resulted in determination of the optimum thrust-to-weight and thrust level. For the space based radar with radial truss arms (center thrust application), the optimum thrust-to-weight (maximum) is 0.1, giving a thrust of 2000 lb. For the annular truss (edge-on thrust application) the structure is not as sensitive, and thrust of 1000 lb appears optimum. For the geoplatform, optimum T/W is .15 (3000 lb thrust). The effects of LSS structure material, weight distribution, and unit area density were evaluated, as were the OTV engine thrust transient and number of burns
Analysis and improvement of the vector quantization in SELP (Stochastically Excited Linear Prediction)
The Stochastically Excited Linear Prediction (SELP) algorithm is described as a speech coding method employing a two-stage vector quantization. The first stage uses an adaptive codebook which efficiently encodes the periodicity of voiced speech, and the second stage uses a stochastic codebook to encode the remainder of the excitation signal. The adaptive codebook performs well when the pitch period of the speech signal is larger than the frame size. An extension is introduced, which increases its performance for the case that the frame size is longer than the pitch period. The performance of the stochastic stage, which improves with frame length, is shown to be best in those sections of the speech signal where a high level of short-term correlations is present. It can be concluded that the SELP algorithm performs best during voiced speech where the pitch period is longer than the frame length
Mars mission solar array Semiannual progress report, period ending 31 Dec. 1969
Design and testing of beryllium-structure solar panel for Mars missio
Dynamic channel assignment in cellular radio
Dynamic channel assignment algorithms for cellular systems are developed. The algorithms are compared with an easily simulated bound. Using this bound, it is demonstrated that in the case of homogeneous spatial traffic distribution, some of these algorithms are virtually unbeatable by any channel assignment algorithm. These algorithms are shown to be feasible for implementation in current cellular systems. For the examples considered, in the interesting range of blocking probabilities (2-4%), the dynamic channel assignment algorithms yielded an increase of 60-80% in the carried traffic over the best-known fixed channel assignment
Many-core applications to online track reconstruction in HEP experiments
Interest in parallel architectures applied to real time selections is growing
in High Energy Physics (HEP) experiments. In this paper we describe performance
measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core
architecture (MIC) when applied to a typical HEP online task: the selection of
events based on the trajectories of charged particles. We use as benchmark a
scaled-up version of the algorithm used at CDF experiment at Tevatron for
online track reconstruction - the SVT algorithm - as a realistic test-case for
low-latency trigger systems using new computing architectures for LHC
experiment. We examine the complexity/performance trade-off in porting existing
serial algorithms to many-core devices. Measurements of both data processing
and data transfer latency are shown, considering different I/O strategies
to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in
High Energy and Nuclear Physics (CHEP); missing acks adde
Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.
Orbital transfer vehicle engine integration study
NASA-LeRC is sponsoring industry studies to establish the technology base for an advanced engine for orbital transfer vehicles for mid-1990s IOC. Engine contractors are being assisted by vehicle contractors to define the requirements, interface conditions, and operational design criteria for new LO2-LH2 propulsion systems applicable to future orbit transfer vehicles and to assess the impacts on space basing, man rating, and low-G transfer missions on propulsion system design requirements. The results of a study is presented. The primary study emphasis was to determine what the OTV engine thrust level should be, how many engines are required on the OTV, and how the OTV engine should be designed. This was accomplished by evaluating planned OTV missions and concepts to determine the requirements for the OTV propulsion system, conducting tradeoffs and comparisons to optimize OTV capability, and evaluating reliability and maintenance to determine the recommended OTV engine design for future development
Orbital transfer vehicle concept definition and system analysis study. Volume 1A: Executive summary. Phase 2
The objectives of the Phase 2 study were to improve the orbit transfer vehicle (OTV) concept definition by focusing on the following issues: the impact of mission requirements on OTV system design; OTV basing concepts on the Space Shuttle, separate platforms, and/or remote locations; cost reduction of an OTV program to improve its economic benefits and support its acquisition. The OTV mission scenario includes a wide range of missions the main drivers of which are manned GEO servicing, mid-inclination/polar DOD, and lunar/planetary projects. A mission model is presented which includes the type and number of missions per year and the estimated propellant requirements. To accomplish the missions, many OTV concepts were defined including ground-based OTVs launched either in the STS orbiter, the aft cargo carrier, or a heavy lift launch vehicle, and a space-based OTV. System and program trade studies were conducted using performance, cost, safety/risk, and operations/growth criteria. The study shows that mission requirements and substantial economic benefits justify a reusable, cryogenic (H2/O2) space-based OTV. Such a system would not be subjected to Earth-to-orbit launch loads and would not be constained in size or weight. Safety is enhanced by the fact that the system components are launched unfueled. Its inherent reusability and ability to be refueled in space make the space-based OTV very economical to operate
Future Requirements and Applications for Orbital Transfer Vehicles
The capability of the Space Shuttle will be enhanced by use of the high-energy Centaur to provide payload transfer to higher orbits (geosynchronous, etc.) and for planetary escape missions. Future orbital transfer vehicles (OTV) requirements for NASA, military, and commercial exploitation of space will require improvements and technological developments such as increased performance, increased reliability, and increased mission versatility. Eventual OTV space basing should offer further cost reductions through vehicle reuse, freedom from Shuttle constraints, and possible STS propellant recovery.
This paper summarizes Centaur characteristics, performance, and program status and presents future considerations for orbital transfer vehicles into the Space Station era, including their capabilities, operational requirements, and the technology developments required to make them a reality
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
- …
