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FOREWORD 

documents the results of contract L-81 740, ?*Orbital Trmsfer 
ne Integmtion Study." This ~ t u d y  waa conducted by General 

Dynamics Convdr Division (GDC) fmm March - November 1984 under contract 
to Aemjet Techsystems Company for NASA-LeRC. 

The CDC Study manager is Bill Ketchum. Other GDC personnel contributed to 
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SUMMARY 

NASA-LeRC is sponsorhg industry studes to establish the technology base for 
an advanced engine for orbital transfer vehicles for mid-1990s IOC . Engine 
contractors are being assisted by vehfclo contractors Po 'define the requirements, 
interface conditions, and operational design cdteria for new LO 2- LH 2 propulsion 
eystems applicable to future orbit transfer vehicles and to assess the impacts of 
apace badng, man rating, and low-G transfer missions on propulsion system 
design requirements. 

This report presents the results of a study conducted by GDC under contract 
to Aerojet for NASA-LeRC. The primary study emphasis was to determine. what 
the OTS engine thrust level should be, how many engines are required on the 
OTV, and how the OTV engine should be designed. This was accomplhhed by 
evaluating planned OTV missions and concepts to determine the requirements for 
the OTV propulsion system, conducting tradwffs and comparisons to optimize 
OTV capability, and evaluating reliability and maintenance to determine the 
recommended OTV en ne design for future development. 

i 

Mission analysis resulted in three major mission catagories. GEO Satellite mis-  
sions accounted for the majority. Low thrust ESS and manned CEO misu~ons are 
fewer and later, approximately same time as apace based OTV EOC m d  awBZ- 
ability of new engine, but rnme demmdhg and are, therefore, the &s.eriminatops 
for the QYV propulsion -ystem. 

Considering the 7 to 10 year development time for a new engine and the mid- 
1990s IOC of the LSS and manned mi xions, the availability of a new space based 
OTV is expected with advanced engines, composite structure, lightweight tanks, 
and aerobraking. Although several OTV concepts were considered, an orbiter 
c a r p  bay launched, space assembled, symmetrical lifting aerobrake , single stage 
L02-LH2 OTV was eolected for analysis. Substantial performance and economic 
benefits of advanced engines, lightweight structures, and aeraarasist are ahown. 
The characteristics of the advanced engines being considered by Aerojet, Rocket- 
dyne, and Pratt & Whitney were used. Additicnal parametric data were supplied 
by the engine contractors for other thrust levels for use in the trade studies. 
The objective of establishing one engine desigii required consideration of both 
the manned and the LSS missions. 

The most difficult mission is the manned GEO soptie mission which establishes the 
maximurn vehicle size and the highest thrust requirements, whi' e Large Space 
Structure (LSS) missions with LEO deployment and checkout dcierrnine the mini- 
mum thrust requirements. Since these are conflicting requirements for one 
engine, effort concentrated on resolving this by attempting to determine a desigrn 
thrust level that would satisfy the manned mission, and w i t h  throttling, also I 
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satisfy the LSS missions. This manned mission has previously been assumed to 
be limited to a high thrust level to reduce gravity losses with a single perigee 
burn to minimize crew radiation exposure/passes thru the Van-Allen radiation 
belts. Several recent studies of dedicated OTVs fos LSS missions have shown 
the advantages of multfple perigee burns to minimize gravity losses at the low 
thrust level8 needed to limit  acceleration bade on large space structure missions. 

Recent work by NASA-LeRC indicates that multiple passes thru the Van-Allen 
radiation belts would not necessarily h c u r  excessive r a a t i o n  doaa 
lower thrust could satisfy both the manned mission and the LSS mission. Send- 
tivity to total thrust for LSS missions waB determined showing the advantage 
of lower thrust levels and multiple perigee burns to obtain the largest LSS 
diameter; a large symmet phased array system was used for analysis. The 
results indicate that alth payload weight capability decreases, the diameter 
of the payload reachea ~ u 1  optimum at 1000 to 2000 lbf thrust 88 a result of reduced 
structural loads. The effects of gravity losses, Isp reduction, and mission trans- 
fer :asses were included. Sensitivity to total thrust for the manned mission was 
determined which also shows advantages of lower thrust levels, lighter engines 
and vehicle systems, and multiple perigee burns to obtain the best payload weight. 
Optimum total thrust for the manned mission, however, is considerably higher 
than for LSS missions (6000 to 12000 lbf vs. 1000 to 2000 Ibf) 

Using mdiation data fmm NASA J56 /LeRC, crew exposure was determhed €OF 01218, 
two, and four perigee burn5 and  ne week at GEO showing that up ta four burne 
could be tolerated without increasing the current manned ~ o d ~ l e  mdhtion shield 

were not included in this study. 

The manned mission requires a very high probability of safe crew return. An 
overall propulsion system reliability of 0.9997 was oelwted (based on USA traffic 
statistics) which would require a single engine of exceptionally high reliability 
or the need for redundane*r. Multiple engines provide for single failure tolerance, 
eliminating the need for rescue operations, and reduces the number of tests 
required to demonstrate the needed reliability. A single engine design would 
have to demonstrate 7600 failure free tests, while a two engine configuration 
Fequires only 140 tests. While the ACS (if H2-02) could provide a backup to a 
single main engine, it is expected that its lower Isp would require additional 
propellant to be carried. Some OTV missions will be flown prior to the first 
manned mission, giving the opportunity to help demonstrate the needed reliability. 
For comparison, the RL-10 e n m e  (based on 69 Centaur flights to date) has a 
predicted start probability of 0.999797 and failure sate of 509 failures per million 
hours of operation. U s i n g  these numbers, analysis shows that two main engines 
will attain the desired reliability (0.3997) even with correlation factors, non- 
independent failure modes, as high as 5 to 10 percent. 

7 

odified trajectories for further reduced radiiation are possible but 
1 

1, 

X 
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Payload optimization for the manned mission was evaluated for the following 
engine parameters : 

0 Aerojet, Pratt a Whitney, Rocketdyne 

o T h n S t ,  3000-25000 LBF 

e Number of perigee burns, 1-4 

e Number of engines, 2-4 

BD Nozzle area ratio, 600-3000 

o Chamber pressure, 1500-2500 PSIA 

e Mixture ratio, 5-7 

e Fixed, extendible/ret?actuble nozzles 

While several vehicle concepts were considered including modular and aft c a r p  
carrier concepts with various aerobrake options, the modular tanks /symmetrical 
lifting brake concept was selected for the trade studfes. Evduation of the aero- 
brake/en@ine interaction determined that doors wouki be neeesssry to cover the 
engines during the aeropass. The ktermUon of the OTV/En@ne/Aerobr&e was 
evaluated. As the engine length incceaees ( f ~ i n c t i ~ ~ ~  of thruet, QX'BR ratio, cham- 
ber pressure, fixed vs . extendible mazzfes) , the aembmke diameter (weight) 
must increase to prevent flow stream impingement on the payload. The number 
of engines and nozzle exit diameter impacts the engine support structure and 
aerobrake door size. Altogether, these allow trades to determine optimum engine 
design and sensitivity. 

I 

1 

The advantage of lower thrust engines and multiple perigee burns i s  shown. 
Additional trades showed the advantages of extendible nozzles, high chamber 
pressuses, and high mixture ratios. A nozzle area ratio of .. 1000 appeared 
optimum. 

While there is a benefit for designing a long life engine, there appears to be 
little advantage €or reducing the frequency of major overhauls beyond 20 to 30 
missions. Major overhaul of the engine for a space based OTV should be done on 
the ground to reduce cost, while routhe maintenance is shown to be advantageous 
in space for anticipated task manhours. 

This study has shown that future OTV engine requirements will be determined 
by LSS and manned missions. To satisfy the manned reliability requirement, twin 
engines appear Po be needed. The optimum engine thrust level is in the range of 

xi 
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3500 to 6500 Ibf each, depending on the number of perigee burns for the-manned 
mission. Although the lower thrust level is preferable for less vehicle and pay- 
load design impact, this is contingent on the acceptance of multiple perigee 
bums for the manned mission and on the ability of the engine manufacturers to 
produce a high performance, relhble, maintainable engine at lower thrust with 
additional starts and longer burn time. 
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SECTION 1 

INTRODUCTION 

NASA LeBC is sponso&g industry studh3 to establish the technology b&se for 
an advanced engine for orbital transfer vel~Mes for mid-1990a ICE. Engine 
contractors are being assieted by vehicle contractors to define the requirements, 
Interface conditions, and operational deaign criteria for new L02-LN2 propulsion 
systems applicable to future orbit transfer vehicles and to assess the impacts of 
space basing, man rating, and low-G transfer missions on propulsion Bystem 
design requirements. 

This report presents the results of a study conducted by General Dynamics/ 
Convair under contract to Aerojet for NASA-LeRC. The primary study emphasis 
was to determine what the OTV engine thrust level should be, how many engines 
are required on the OTV, and how the OTV engine should be designed. This 
was accomplished by evaluating planned OTV missions and concepts to determine 
the req&ensnts for the QTV propulsion system, conducting tradeoffs and com- 
parisons to optimize OTV capability, and evaluating reliability and maintenance 
to determine the recommended OTV engine design for future deqelopment 
(Figures 1-1, 1-2). 

m driving mission 

* Payload dafinition 
* Number of flightJ 

* Requirements for manned 

* FWormance & operations concepts 

* Engine types. numbers 

* Modular & aft cargo carrier 
requifemenW mission. satellite placement & & arrangements 

large space structures mission 

Aeroassist concepts 

* Vehlclelengine integrati?n 
* Thrust levellnumber * Life 

Number af engines 

of engines Maintenance 

mixture ratio, etc 269.022-1 
Nozzle area ratio, 2811473&1A 

Figure 1-1. OTV Engine Support Study Elements 

1- 1 
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Number of bums 
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Design concept 

r, mromed hain engine 

Space Station man oedica!ed low 
thrust eogine 

Separate 
development 
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e Assured checkwt 
mth Shuttle OT 

assistarrse 

zaltl(M.13 

269.022-2, 

a LEO deployment fl 

e Man M i s t  at OEO 
Expendable not initially available 

Gmund- 
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Figure 1-2. Advanced LOz-LPIz OTV En@ine Definition Approach 
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0 GEO s ~ ~ ~ ~ i i ~ ~  missions 
- 70% commercial & NASA mark t share - 5 to 7 

missions per year (3 to 4 satellites manifested on 
each mission = 10,000 ib) 

- Servicing - 2 missions per year 
- DoD - 6 missions 
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SECTION 2 

MISSIONS AND REQUIREMENTS 

Mission anaiysis resulted in three major mission categorize (Flgures 2-1, 2-21, 
GEO Satellite missions accounted for the majority. Low thrrlst LSS And manned 
GEO missions are fewer and later, approximately same f3rn.3 as space based 0 . r V  
IOC , and availability of new engine, but mcrc. demanding and am, therefore, 
the discriminators for the 3TV propulsion system. The most zurrcnt NASA 
mission model and other sources were used to categorize requirements. 

0 Low thrust LSS missions - 10,000 to 16,000 Ib payload 
- 2 to 4 missions per year 

anned GEO sortie missions 
- 1 per year 
- 13,QQQ Ib payload round-trip 

Figure 2-1. OTV Missions 

i 

I 

269.022-3 
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SATE LLlTE DE LIVERY 
GEO SATELLITE 

SDI 
AWNED PLklltETARY 

I 
*LOdLHs SINGLE STAGE (AEROBRAKI 

Figure 2-2. OTV Mission Requirements 
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SECTION 3 

OTV CONCEPTS AND ENOINES 

Considering the 7 to 10 year development ,time for a new en&e and the mid- 
1990s IDG of the LSS and manned missions, the availabuty of a now space 
based %.,TV (Figures 3-1, 3-2, and Table 3-1) is expected with advanced enghes, 
compou.: 3 structure, lightweight tanks, and aerobraking. Although several 
OTV concepts were conoidered (Figure 3-3), an orbiter cargo bay launched, 
space assembled, symmetrical lifting aerobrake, single stage OTV was selected 
for analysis. 

-- 
Figure 3-1. Space Based OTV I 

1 
f Besides higher tSp engines, several othelr technologies have been iCzntified that 

will  make OTV reuse econarnicelly beneficial. These include redudng the inert 
OTV weight and utilizing aemrnssbt. 

Reduced weight can be achieved with advanced structures (eo.nposites) by 
decreasing the loads bposed during launch and powered opersffon and by 
reduced tank pressures, Decreased loads Lare possible by initially launching the 
OTV f r o m  earth without propellant, and by low thrust powered operation. 

3- 1 



&gur@ 3-2. LQ2-LEI2 Space Based OTV 

Space basing allows the OTV to bo launched hitimy without pmpeuants and refueled 
on-orbit. Since the loaded tanks will be exposed only to a vacuum, internal 
pressures need not exceed those resulting from propellant vapor pressures 
which can be just above the triple point, possibly not exceeding 3 psia, as 
opposed to sea-level saturation conditions (>  14.7 psia) for a ground based O T y .  

Once fueled, loads can be minimized by use of low thrust during powered oper- 
ation which will be needed for certain payloads, e.g., Large Space Structures. 

Besides Lnert weight reduction, the technology of aeroassist can reduce the pro- 
pulsive AV requirement for return from GEO by 50 percent (7000 fps versus 
14,000). For manned, round trip missions, this results in a 50 percent reduc- 
tion in OTV propellant required. 

I 5  

To achieve these improvements, technology development is needed in each area. 

3- 2 
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Table 3-1. Modular Tank Space-Based QTV,  Weights Summary 

Tank Sets 
Quad Twin 

Core assembly 

o Main engine & TVC 

0 Docking system 

o Astrionics 
Forward s aft service bulkheads 

0 Structure 

o Electrical power 

e ACS 8 tank pressurization 

I, 647 

322 322 

24 24 

276 276 

130 130 

216 216 

-- 1,647 
_I_ 

291 

218 

291 

218 

o Tank module disconnects/attaches 20 20 

0 Main propellant €eed 

o Contingency 

70 

80 

70 

80 

1,196 - Outrigger tank sets 2,390 

Propellant tankage & fittings 

Insulation 

o Propellant acquisition & feed 

Q Structure 

o 1nstrumen:aMon 

o ACS 8 tank pressurhation 

@ Tank module disconnects/attaches 

Q Contingency (5%) 

Auxiliary fluids 

314 

348 

648 

789 

49 

87 

35 

120 

180 - 

151 

174 

324 

395 

25 

43 

18 

60 

o ACS usable propellant 90 60 

o Fuel cell reactants 90 40 

160 220 

1950 Aerobrake I associated structure 1950 

BURNOUT \JEIGMT 6382 5053 
USABLE MPS PROPELLANT 53460 28730 
USABLE IMPS PROPELLANT MASS FRACTION .893 .841 

- - Residuals, boiloff 8 other losses 

- 

3- 3 
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AFT CARGO CARRIER 

MOQULWA 

SIDE BAL..lJPE 

2139.022-7 

Figure 3-3. Alternate OTV Configurations 

3- 4 
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The characteristics of the advanced engines being conaidered by Aerojet , Rocket- 
dyne, and Pratt & Whitney are shown in Figure 3-4. Additional parametric data 
were supplied by the engine contractors for other thrust level8 €or use in the 
trade studies. The payoff of advanced techmlag4es shows the advantages of 
advanced engines, lightweight Panks/atructure, and 8em assi& mpabflity 
(Figure 3- 5). Advanced engines and Idghtweight FwksIstmcture give high pay- 

round trip mi8dons, but payload delivery missions are very sensitive to aem- 
brake weight. 

off for payload delivery EIkdQn8. A@roafdist ve8 high payoff for payload J 

Figure 3-6 shows the substantial economic benefiF of a new engine. 

I 

3- 5 
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AEfiOJET 

3,000 
EXPAMDER H2-02 

2,000 
1,200: 1 

> 480 

2oopoo 
75,000 
CLOSED LOOP 
30: 1 
2 STEPS 
(15:l CONTINUOUS) 
GASEOUS OXYGEN 
DRIVE TURBIrUE 

ANNULAR THRUST 

MULTiPLE ENGINE 
CONTROL 

ROCKETOYNE 

15,000 
EXPANDER H2 

2,000 
1,300:l 

> 480 

17a.000 
56,200 
CLOSED LOOP 
30:l 
3 STEPS 
DISCRETE 
HYDROGEM PUMP CRITICAL 

MULTIVARIABLE CLOSED 

HIGH AREA RATIO NOZZLE 

SPEED 

LOOP CONTROLS 

ROCK€TDYNE 

PRAIT & WHITNEY 

15.000 
EXPANDER H2 

1.500 
6M:l 

>480 

150,000 
67,390 
OPEN LOOP 
30:l 
3 STEPS 
DISCRETE 
HIGH SPEED HYDROGEN 

ADVANCED THRUST 

HIGH AREA RATIO NOZZLE 

COOLED GEARS 

PRATT & WkTNEY 

ADOITIOWAL ~ A ~ A ~ E T R ~ C  DATA 
W ~ S S ~ ~ L l ~ O  FOR OTHER 
THRUST LEVELS 

269.022-8 
I I- 

Figure 3-4, Advmnced OTV Propulsion System Concepts 
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0 ADVANCE0 ENGINE & 
LIGHTWEIGHT TAMKS AN0 
STRE'CTURE GIVE H I G H  
PAYOFF FOR PAYLOAD 
DELIVERY MiSSlONS 

0 AEROASSIST GIVES HIGH 
PAYOFF FOR PAYLOAO 

1 
I 

ROUMD-TRIP MISSIONS 

MISSIONS VERY SENSITIVE 
TO AEROBRAKE WEIGHT 

0 PAYLOAO DELIVERY 

2BS.022-9A 

Figure 3- 5. Cryogenic, Reusable Space-Based OTV Teehncslogy 
Payoff (Lightweight Tank, Structure, Crdvarteed 
Engineer, AemrsskQ) 

-PAYLOAD OELIVEREO TO GEO (WO RETURN) 
-OTV ROUND TRIP (LEO-GEO-LEO) 
-TWIN TANK SET MOOULAP SBOTV (LO2/LH2) 
-485 SEC ISB MEW ENGINE - 1950 LE AEROBRWKE 

S121MIYEAR BENEFIT" 

S781NEAR BENEFIT" 

- MEW EWGIME (+ 25 SEC IS) SAVES $80s/LBp~. 

- AERBBRAKIfUG SAVES $517/LOp~: 

-MEW ENGINE & AEROBRAKING SAVES $1058/LBp~ $159M/YEAR BENEFIT. 
-MEW ENGINE OFFERS 76% OF TOTAL BENEFIT - AEROBAAKIMG OFFERS 49% OF TOTAL BENEFIT 

COST A ~ U ~ ~ I ~ ~ ~ ~  1 ALL PAOBULSIVE 
2 AEROBRAKED t I _- 

- 7  Q OTV T U R N A ~ O U ~ ~ ,  Brd 
e PROPELLANT DELIVERY To LEO, 

PAYLOAO DELIVERY TO LEO, $M -lL0028 X PAYLOAO WEIGHT 

266.022-39 *15OpaO LBM CUMJL~TIVE P A Y L O A ~  PER YEAR TO GEO (18 OTV 

Figure 3-6. Economic Benefit of Advanced Erame _- 
3- 7 
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SECTION 4 

MYSSIONS , SYSTEMS, PERFORMANCE INTERACTION AND TRADES 

The objective of establfshirmg one engine design required mnsideratlon of both 
the manned and the LSS missions (Figure 4-1). The most difficult mission is the 
manned GEO sortie mission which establishes the maximum vehlcle Size and the 
highest thrust requirements, while LSS missions with LEO deployment and checkout, 
determine the minimum thrust requirements. Since these are conflicting require- 
ments for one engine, effort concentrated on resolving this by attempting to 
determine a design thryst level tf,at would satlafy the manned mission, and with 
throttling, also satisfy the LSS missions. 

! T I  

e--- 

* Reduce number 

Van Allen Belts 
of pasties through 21911470945A 

269.022-10 

Figure 4- 1. Mission, Systems and Performance Antilysis Interaction 

The manned mission has pre4ously been assumed to be k i t e &  to a high thrust 
level to reduce gravity losses with a single perigee burn to minimize crew raciia- 
tion exposure/passes thru the Van-Allen radiation belts. Several recent studies 
of dedicated OTVs for LSS missions have shown the advantages of multiple 
perigee burns to minimize gPavity losses at the low thrust levels needed to limit 
acceleration loads on large space structure missions, 

I 

4- 1 
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Recent work by NASA-LeRC indicates that multiple passes thru the Van-Allen 
radiation belts would not necessarily incur excessive radiation dosage. Thus, 
lower thrust could satisfy both the manned mission and the LSS mission. 

4.1 THRUST LEVEL 

SensBtfvity to total thrust, for LSS missions was determined showing the advan- 
tage of lower thrust levels and multiple perigee burns to obtain the largest LSS 
diameter. A large symmetrical phased array system shown in Figure 4-2 was 
used for analysis. The results indicate that although payload weight capability 
decreases, the payload diameter reaches an optimum at 1000 to 2000 Ibf thrust 
as a result of reduced structural loads (Figures 4-3, 4-4). Effects of gravity 
losses, Isp reduction, and mission transfer losses have been included (Figure 
4-5). 

Sensitivity to total thrust for the manned mission was determined (Figure 4-6) 
which also shows advantages of lower thrust levels, lighter engines and vehicle 
systems, and multiple perigee burns to obtain the best payload weight. Optimum 
total thrust for the manned mission, however, is considerably higher than for 
LSS missions, 6000 to 12000 Ibf vs. 1000 to 2000 Ibf. 

Using radiation data from NASA JSC/LeRC , crew exposure was determined for 
one, two, and four p e ~ g e e  burns and one week at GEQ , showing that up to four 
burns could be tolerated without increasing the current manned module radiation 
shield thickness (Figuree 4- 7, 4- 8 ,  4- 9) . Modified trejectories €or further 
reduced radiation are possible but were not included in this study. 

4.2 S+NGLE AND MULTIPLE ENGINES 

The manned mission requires a very high probability of safe crew return. An 
overall propulsion syetem reliability of 0.9997 was selected, based on USA traffic 
statistics, which would require a single engine of exceptionally high reliability 
or the need for redundancy. Multiple engines provide for single failure tolerance, 
eliminating the need --9r rescue operations, and reduces the number of tests 
required to demonb d e  the needed reliabMty. Figure 4-10 shows that a single 
eng-ine design would have to demonstrate 7600 failure free tests, while a two 
engine configuration requires only 140 tests. While the ACS (if H2-02) could 
provide a backup to a single main engine, it is expected that its lower Isp would 
require additional propellant to be carried (Figure 4-11). Some OTV missions 
w i l l  be flown prior to the first manned mission (Fig'ure 4-12), giving the oppor- 
tunity to help demonstrate the needed reliability. For compnrimn, the RL-10 
engine, based on 69 Centaur flights to date, has a predicted start probabdilty of 
0.999797 and failure rate of 509 failures per million hours of operation. Using 
theae numbem, analysis shows that two main engines will attain the desired 
reliabsty (0.9997) even with correlation factors, non-independent failure modes, 
a8 high as 5 to 10 percent (Figure 4-13). 
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Figure 4-8. Manned GEO Sortie Mission Options 
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Figure 4- 9. Mmned GEO Sartia Mission Operations 
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2 Main Engines 

lsp, se:: 4851485 
Return propellant, lbm 10,970 t Ascent propellant, lbm 44,070 

I Total, lbm I 55,040 

13,000 Ibm payload round trip to GEO 
6,400 Ibm OTV burnout weight 
Main engine failure at GEO 
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Figure 4-11. Additional Propellant Penalty Required for ACS 
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R, = RZ eAt: 1 engine 
R2 = R: + 2R, (l-fl,)(l-C): 2 engines 

Where R, = .999797 (start, stop) 1 RLIO engine X = 509 x 10" failures per hour 
C = 0, .OS, 0.1 (correlation) 269.022.22 

% Figure 4-13. Manned OTV Propulsion System Reliability 

4.3 TRADE-OFFS 

Payload optimization for the manned mission was evaluated for the following 
engine parameters (Appendix I) : 

a. Aerojet, Pratt B Whitney, Racketdyne 
b. Thrust, 3000 - 25000 LBF 
c .  Number of perigee burns, 1 - 4 

d. Number of engines, 2 - 4 

e, Nozzle area ratio, 600 - 3000 

f. Chamber pressure, 1500 - 2500 PSIA 

g. Mixture ratio, 5 - 7 

h . Fixed, extendible /retractable nozzles 

While several vehicle concept R were considered, inclucking modular and aft cargo 
carder concepts with various aerobrake options, the modular tanks/symmetrical 
Ufting brake concept was selected for the trade studies. Evaluation of the aero- 
brake /engine interaction determined that doors would be necessary to cover the 
enfines during the aeropass, because of ce:rcerns of vehicle stability and control, 
flow field interactions, engine cooling, and leakage of base gasses to the OTV.  1 

I 
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The interaction of the OTV/Engine/AerobrRke is shown (Figure 4-14). A s  the 
engine length increases (function of thrust, area ratio, chamber pressure, fixed 
vs. extendible nozzles), the aerobrake dianeser (weight) must increase to pre- 
vent flow stream impingement on the payload. The number of engines and nozzle 
exit diameter impacts the engine support structure and aembrako door size. 
Altogether, these allow trade-offs to determine opthum engine design and 
sensitivity. 

J 

Figure 4-14. Engine Trade Study Impact on Vehicle Design 

The advantage of lower thrust engines and multiple perigee burns is shown. 
(Figure 4-15),  A nozzle area ratio of - 1000 appeared optimum (Figure 4-16). 
Additional trades (Figure 4-17 to 4-19) showed the advantages of extendible 
nozzles, high chamber pressures, and high mixture ratios. 
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SECTION 5 

ENGINE DESIGN 

5.1 ENGINE LIFE 

To define how the engine should be designed, an economic analysis was con- 
ducted for engine life and maintenance. While there is a benefit for designing 
a long Xife e n m e ,  there appears to be little advantage for reducing the fre- 
quency of major overhauls beyond 20 to 30 missions. 

Figure 5-1  indicates the formula used to determine the benefit of a long-life 
engine and a description of the parameters used. Figure 5-2 is a sample case 
generated with these assumptions. 

0 [D, + (Ns x Us) + N, x (T+R)] - [QL c (NL x U,) + Nr x (C+T+ RI! 
m 
= Development cost of aiternative (shorter-life) engine 
= Number of units of alternative engine required (over OTV life) 
= Unit cost of alternative engine 
= Number of short-life engine replacements required over OTV life 
= Cost of transporting one O W  engine to LEO 
= Cost of replacing an OTV engine 
= Development cost of long-life engine 
= Number of units of tong-life engine required (over OTV life) 
= Unit cost of long-life engine 
= Number of engine refurbishments required (for rnaintenmce of IC rg-life 

= Cost of refurbishing a long-life engine 

0, 
N, 
Us 
N, 
T 
R 
DL 
NL 
UL 
Nf 

C 
engine over OTV life) 

281 14801.5 
269.022-29 

Figure 5-1. Economic Benefit of Long-Life En@n ; 
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e Number units required = 22 (10 mission life, 

* Unit cost = $10M 
200 missions total, 2 spares) 

Lo 
e 

* Number units required = 4 (100 mission life, 

0 Unit cost = $10.42M 
0 Number of refurbishments required = 6 (every 25 missions) 
0 Cost of refurbishment = $1M (per refurbishment) 

0 Cost of transporting one engine to LEO = $4M 
0 Cost of replacing an engine = $0.8M 

200 missions, 2 spares) 

Figure 5-2. Sample Case 

281 14801 4 

269.022.30 

I 

The life-cycle economic benefit of a long-life (100 mission) OTV engine is closely 

mission OTV engine. The long-life engine yields a positive undiscounted benefit 

the short-life engine exeeds  about $3 million (Figure 5-3). This calculation is 
based on data provided by Aerojet (Appendix 11, Tables 1-1 and 1-2) which indi- 
cate that the long-life engine has a $105 million. greater non-recurring cost and 
a $0.42 million greater recurring cost than the short-life engine. 

related to the unit recurring production cost of the alternative short-life PO 

over the OTV mission span, two engines in use at all times, if the unit cost of 

I 

t 
5 
i 

These data also include the assumption that the long-life engine must be 
returned to Earth for each major refurbishment every 25 missions. Establish- 
ing the capability to do these refurbishing tasks in space could save $4 million 
in transportation costs per overhaul and hence increase the benefit of the long- 
life engine by as much as $24 million over the values indicated or this graph. 
It is expected, however, that the added costs of utilizing the Space Station for 
engine refurbishment wouA exceed these transportation cost savings, 

The nominal refurbishment rate assumed for the long-life OTV engine, one OWF- 
haul per 25 missions I is sbwn to be in the optimal range (Figure 5-4). Economic 
benefit of the long life engine drops sharply at higher overhaul rates to $lOOM 
at one overhaul pep 16 missions, $53M at one overhaul per 9 missions, and to 
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zero at one overhaul per six missions. Benefits of reducing the refurbishment 
rate below the nominal rate are relatively modest Doubling the number 
of missions between overhauls results in a $25 million increase in life cycle bene- 
fit; the benefit of further reductions in the refurbishment rate ia barely 
noticeable. 

5.2 ENGINE MAINTENANCE 

Major overhaul of the engine for a space based OTV should be done on the 
ground to reduce cost (500 manhours at $100/hr on ground vs. 1000 manhours 
at $20000/hr in space) , while routine maintenance is shown to be advantageous 
in space for anticipated task manhours (20 on ground , 40 in space ), 

The benefits and costa of space maintainability versus returning O T 7  engines 
to Earth for servichg were evaluated for two cases (Figure 5-51, "Routine 
maintenance" represents the most frequent and least complex type of servicing, 
assumed to nominally require 20 man-hours if performed on the ground and 40 
hours if performed in space, with a frequency of one event every five missions. 
Establishment of Space Station facilities to support reutine maintenance in space 
is assumed to cost $10 million mone than establishment of similar facilities on 
Earth. Transportation costs involved in returning engines to Earth for routine 
maintenance are assumed to be $2.5 million per event. 

Man-hours to perform task 

Number of times 
performed 
(over 200 missions) 

Tiansportation cost 

Non-recurring cost A' for 
Space Station servicing 
equipment 

Manpower cost 

' Over cost of establishing 
same facilities on Earth 

Routirie ~ ~ i n t ~ ~ ~ n c ~  

Ground-20, Space-40 

38 
(every 5 missions) 

$2SM 

$1 OM 
(space only) 

G round-$1 OO/h r 
Space-$20,000/hr 

Major Overhaul 

GrounddOO, Space-1 ,000 

6 
(every 25 missions) 

$.EM 

$1 OOM 
(space only) 

Ground-$1 OOlhr 
Space-$20,000/hr 

28114801. 
269.022.: 

! 
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I 
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Figure 5- 5 .  OTV Engine Maintenance Baseline Assumptions 
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servicing with 500 
hours required if performed on Earth and 1,000 hours if done in space. Fre- 
quency of major overhauls is assumed to be once every 25 missions, and develop- 
ment of Space Station facilities to support major overhauls is assumed to cost 
$100 million more than providing the same capabilities on the ground. Transpor- 
tation costs are assumed to be $4 million per overhaul. Manpower costs for 
eng-he servicing are assumed to be $100/hour on the ground and $20,000fhour 
in space. 

Plotting the costs of major engine overhauls as a function of the man-hours 
required to perform each overhaul clearly shows that performing major over- 
hauls in space is very unlikely to be economical (Figure 5-6). Although amorti- 
zation of nonrecurring costs of Space Station support facilities is a mejor cost 
factor, performing overhauls in space is over $15 million more expensive per 
overhaul even when Space Station facility costs are excluded. Performing over- 
hauls in space is only economical if facility costs are excluded and manpower 
required is less than 200 man-hours to perform the overhaul in space. 

- 

CQ (with NR. cost Of 
c0 Station facilities 

ortimodover 6 
(every 25 missions) 

Spak~ (with no NR costs 
of Space Station facilities included) 

$1 5M 

Task 
cost Cost of buying & 

delivering new OlV 
$1OM engine to LEO 

Baseline manpower requirement 

I 
I 
I 

I I 
ground - 0 250 500 750 

500 1,000 1,500 space 
ZBllaEall.19 

269.022.34 

Man-hours to perform task 'NA - non-recurring 

Figure 5-6. Task Costs For Major OTV Engine Overhauls 
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For routine OTV engine maintenance tasks, servicing in space is shown to be 
the most economical option (Figure 5-7). Space manpower requirements and costs 
are much lower than for performance of major overhauls, and Space Station 
facilities are less expensive and amortized over a greater number of servicing 
events. Returning the engine to E a r t h  for routine maintenance is cost-effective 
only if the time required to service the engine in space exceeds 56 rnanhours. 
Amortization of Space Station facility costs over fewer events reduces the sttrac- 
tiveness of space servicing, but even at low maintenance frequencies (every 20 
missions) the space servicing option is more economical as long as manhours 
required do not exceed the baseline value (20 hours) by more than 50 percent 
In the baseline case, servicing in space is about $1.4 million less expensive per 
servicing event than ground servicing, or about $280,000 less expensive per 
OTV mission. The bcnefir of performing routine engine maintenance in space, 
calculated at $280,000 per OTV mission, could be considered partially or fuUy 
offset by payload weight penalties if any such penalties are incurred by design- 
ing the engine for space maintainability and if resultant pay1 capacity reduc- 
tions are eonsidered to have an economic cost. With payload t/lb to GEO 
(assumed to be $4,000 - $10,000) used as a measure, the weight penalty costs 
of the space-maintainable engine beph to exceed the benefits of space mainte- 
nance when the wdght penalty reaches 28 to 70 pounds per mission, depending 
on the costllb to CEO used as R basis for calculation (Figure 5 - 8 ) .  Calculation 
of the costs associated with payload weight penalties are somewhat subjective, 
since ev@n with very high manifesting efficiencies the QTV will probably have 
500 or more pounds of excess (unused) capebility on 8 typical geosynchronous 
mission. If, for example, only ten percent of all OTV missions were affected. 
by a weight penalty in the range of Consideration, then costilb to GEO might 
be multiplied by 0.10 .before being used as a measure of weight pendty costs. 
With this methodology, weight penalties would need to be in the hundreds of 
pounds before their costs would approach the benefits of space maintainability. 

i 
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SPACE (WITH NR COST OF SPACE STATION 
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Figure 5-7. Task Costs For Routine OTV Engine Mlintenance 
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Figure 5- 8. Benefit of OTV Engine Space-Maintainability (Rclutine Maintenance) 
As A Function of Payload Weight Panalty Incurred). 
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SECTION 6 

CONCLUSIONS 

This study has shown (Table 6-1) that future OTV entfins requirements wi l l  be 
determimed by LSS and manned missions. To satisfy tho mtlnnad reliability 
requirement, twin engines are needed. The optimum design thrust level is in 
the range of 3500 to 6500 lbf each, depending on the number of perigee burns 
for the manned mission. Although the lower thrust level is referable for less 
vehicle and payload design impact, this is contingent on the acceptance of mul- 
tiple perigse burns for the manned mission and on the ability of the e n m e  
manufacturers to produce a high performance, reliable, and maintainable engine 
at lower thrust with additional starts and longer burn time. It  is recommended 
that further research be planned. 

Table 6-1. OTV Engine Study Findings 

Manned GEO mission & LSS mission impose conflicting requirements for one 
engine design 

Multiple perigee ascent burn trajectories offer optimal performance at low 
thrust levels needed for LSS missions 

Multiple perigee ascent burns ( 3- 4) cm be performed without increasing 
manned module shielding weight above that required for stay at GEO 

Optimum total thrust level for 13,000 l b m  payload manned GEO mission is 
6.000-7,000 Ibf (3 -4  perigee burns) vs. 13000 lbf (1 burn) 

Optinium total thrust level for 10,000-20,000 lbm payfoad CSS mission is 
1.000- 2 , 000 Ibf ( 8 perigee burns) 

Redundant engines are required for propulsion system reliability needed 
for mission success & crew safety, and to reduce tests 

High reliability engines will be demonstrated by testing 81 operational 
missions before manned requirement occurs 

Backup (02-H2) APS (to a single main engine) results in ndditional 
propellant required due to decreased ISP.  Q2-H2 APS may have logistics 
advantages 

Recommended engine configuration is 2 main engines 

6- 1 I 
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Table 6-1. OTV Engine Study Findings, Contd 

e Optimum engine design thrust level is 3.000-3,500 lbf each (3-4 perigee 
burns) vs 6,500 lbf each (1 perigee burn) 

e Long-life (100 missions) engine rwxnmended, but little economic benefit 
indicated for reducing frequency of major overhauls beyond one overhaul 
per 20-30 missions 

I 

e Major overhaul on ground 8 routine overhaul in space are recommended for 
Space-based OTV engine 

o Further studies are recommended to evaluate multiple perigee burns for 
manned missions & to define high performance, relfable, maintainable 
engines at bwer thrust levels (3,000-3,500 lbf) 

6- 2 



GDC -S P - 84- 050 

APPENDIX I 

ENGINE PARAMETRIC DATA 

Aerojet 

Pratt & Whitney 

Rocket dyne 

NOTE: The OTV endne parametric data produced by 
Rockaell I nternntional are considered proprietary 
infarmation and are hence not included. 
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Table A-1. Aerojet OTV Dual Propellant Expander Cycle Engine 

NOTES 
1, ISP IS VACUUM OELIVEAED AT 1POK BELL (SECONOS). 
2. M19 = 6.0:l LOZILH~.  
3. 1 = ENGINE LEMGTH (IM.1. 
4. N - ENGIWEWEIGHT (LEM.). 
5. 10 EWTHALPY PUMPIMG. 

445 
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 

MIXTURE RATIO (oM)  

2CQ.022-37 

r. 
I 

3 

269.022-38 

Figure A-1. Aerojet OTV Dual Expander Cycle Engine Delivered ISP V s .  
Mixture Ratio 
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Table A-2. Pratt & Whitney 3K Thrust Engine 

DELHVEREB 

1200 
1200 
1200 
1200 
1200 
1200 

I200 
1500 
1200 
1500 
1200 
1500 
1200 
1'500 
1200 
1500 
1200 
1500 

600 
800 

I500 
2000 
3000 

iaoo 

473,l 
472. ? 
492.0 
468.4 
463.1 
450.9 

Table A-3.  Dratt 15 Whitney fiK Thrust Zngine 

600 
600 
800 
800 

to00 
1000 
1500 
1500 
2000 
2000 
3000 

3000 

I-  3 

73.6 
475.8 
413.2 
476.0 
472.5 
475.6 
468.9 

473.3 
463.7 
469.4 
451.5 
460.1 

201 
208 
216 
236 
255 
294 

E52 
243 
264 
253 
2 76 
263 

306 
288 
337 
31 2 
399 
362 

i 

I 

i. 
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Table A-4. Pratt Br Whitney 10K Thrust Engine 

(PS I )  

1200 

1506 

1200 

1500 

I200 

15QO 

1200 

1500 

1208 

1 so0 

1200 

1506 

REA RATIO 
~~ ~ 

600 

600 

800 

800 

1000 

1000 

1500 

1500 

2000 

2000 

3OOQ 

3000 

DELI VEREO 

(SIX.)  - 
474.2 

476.3 

473.7 

476.4 

472.9 

474.2 

469.3 

474.0 

464.4 

470 0 

452 2 

460.7 

(LB.) 

345 

331 

368 

351 

394 

370 

4 54 

41 9 

59 5 

466 

636 

564 

. .  
. .i' 

I-  4 

i 
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Table A-5. Pratt 8c Whitney 15K Thrust Engine 

I200 
1500 

2000 

1200 

3500 

2Q00 

3 200 

600 

600 

600 

800 

890 

800 

:ooo 

474 0 5 

476.5 

478.6 

474.2 

476.7 

479.2 

413.5 

1500 1000 476.5 

1200 

3500 

ZOO0 

1200 

1 SOQ 
2000 

1200 

1500 

1000 

1500 

1580 

1500 

2000 

2000 

2000 

3000 

3000 

479 5 

469.8 

474.0 

478.2 

464.8 

470.3 

476.0 

452.6 

461 . O  

419 

398 

376 

454 

428 

399 

$91 

4s7 

42 1 

$82 

530 

476 

672 

603 

531 

853 

?43 

2GOO 3000 469.4 642 

I- 5 i 
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APPENDIX 11 

ENGINE COST DATA 

( Aerofet) 

I 

I 

I 
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Table 1-1. Cost Trade: Short vs Long Mission Life 

Engine 

Cost DeltP, 
Short Life (10 Missions) Long Life (100 Missions) 

Recurring Recurring* Recurring Recurring 
Non- Non- 

U s e  oi' Hydrostatic Bearings 
Development and Qual 
Additional Fab Complexity, 
QC, Test 

Health Monitoring - Failure 
Prevention 
Development and Qual 
Fab , Instrumentation, 
Computer 

Health Monitoring - Life 

Development and Qual 
Fab , Instrumentation, 

Projection 

Computer 

Space-Replaceable Engine 
Development and Qual 

Mission 

Space- Replaceable Engine 
Design of Service Center 
Assembly of Service Center 
Space Operations (Engine 
Replacement) 

Transfer of Engine f r o m  
Earth to LEO & Return* 

5M 

20 K 

200 K 

40 M 

20 M 

200 K 
i i. 

I 

100 M 
250 M 

800 K 

400 K 

*Per Engine 

NOTE: Long life is baseline AEimjet design 



i 
I4  
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c 

Table 1-2. Cost Trade: Low vs High Specific Impulse (Isp) 

Cost Delta 
Low Isp 

Non- 
Becutodng R e c u d  Recurring Recurring” 

Dual Pmpellant Expander 
Cycle 

Development and Qual 
Fab, QC 

Extendible Nozzle 
Development and Qual 
Fab, QC 

or 

Large Area Ratio Nozzle 
Development and Qual 
Fab, QC 

Mission 

Delivery of Addit io~i~ 

(12/480 - 2.5%) 
PlWp@llEUlt 600 M 

- -~ 

15 M 
200 K 

10 M 
50 K 

2 M  
25 x 

1 M  

*Per Bngiine 

NOTE: Aerojet 3000 IbF engine design with 1200: 1 nozzle has projected l s p  
of 484 IbF sec/IbM and near maximum Isp. AdditionaI gains of 12 IbF 
sec/lbbM are doubtful. Therefore high Isp case is baseline. 

11-2 
% 

c 

I 
I 
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Orbital  T r a n s f e r  Vehicle dngine 30 November 1984 
I n t e g r a t i o n  Study 

c 

W. J. Ketchurn 

General Dynamics - Convair D iv i s ion  
San Diego, C a l i f o r n i a  

Nat iona l  Aeroqaut ics  h Space Adminis t ra t ion 
Lewis  Research C e n t e r  

,Cleveland,  Ohio 44135 
A_- 

-- 
NASA-LeRC is ~~~~~~~~ s t u d i s s  eo estwbafata t he  ~~~~~~~~~~y 
base for  an advanced 8 b i t a l  transfer &Pehicle)s for ~ ~ ~ - ~ ~ ~ # ~  
IOC. Engine c o n t r a c t o r  ~~~~~t~~ by v e h i c l e  c o n t r a c t o r s  t o  
def ine  t h e  require cond i t ions ,  and operational design 
criteria for new L propuls ion  e m s  a p p l i c a b l e  t o  f u t u r e  o rb i t  
t r a n s  fer veh i c  1 es c t s  of space bas ing ,  ma 
and low-G t r a n s f e  hOn5 On propu n system dgsfzn r e q u i r e  

This report presents t h e  r e s u l t s  of a s tudy  conduct by GDC under  con- 
tract  t o  Aerojet for SA-LeRC. The primary s tudy  hasis was to 
determine what the  OTV engine  t h r u s t  l s v s l  should be, how many eng ines  
are requ i r ed  on t h e  OTV, and how t h e  OTV e n g i n e  should be designed. 
This was accomplished by e v a l u a t i n g  planned OTV miss ions  and concepts  t l  

de termine t h e  requirements  for t h e  -0TQ propuls ion  system, conduct ing 
tradeoffs and comparisons t o  optimize OTV c a p a b i l i t y ,  and e v a l u a t i n g  
r e l i a b i l i t y  and maintenance t o  determine t h e  recommended OTV eng ine  
des ign  f o r  f u t u r e  development. 

8 assess the  

Advanced engine  

O r b i t a l  T r a n s f e r  Vehicle 
Space Based 

Oxyg@n-hydrOg@n 
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