1,345 research outputs found

    Mars mission solar array Semiannual progress report, period ending 31 Dec. 1969

    Get PDF
    Design and testing of beryllium-structure solar panel for Mars missio

    Many-core applications to online track reconstruction in HEP experiments

    Full text link
    Interest in parallel architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core architecture (MIC) when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP); missing acks adde

    Utilizing x-ray computed tomography for heritage conservation : the case of megalosaurus bucklandii

    Get PDF
    Of key importance to any cultural institution is the practice of conservation, the method by which specimens at risk of severe degradation or destruction are treated to ensure that they survive into the future. However, surface inspection is often insufficient to properly inform conservators of the best treatment approach, and where there is little to no record of the conservational history of an object it can be difficult to identify exactly what form of conservation has been undertaken. X-Ray Computed Tomography (XCT) grants a way to overcome these issues by allowing conservators to non-destructively investigate the subsurface details of an artefact to provide essential information on condition of a specimen. Here, the potential of this approach is demonstrated using the first XCT scans of the iconic dentary of Megalosaurus bucklandii Mantell, 1827 (1); the first dinosaur ever named and described scientifically. XCT analysis reveals that the degree of repair is less extensive than previously thought and also elucidates two different material types, M1 and M2, thought to be representative of at least two phases of repair. Finally the potential of this approach is further explored, highlighting its importance for conservation practice, identifying forgeries and hoaxes in addition to potential applications in public engagement

    Comparative genomics and understanding of microbial biology.

    Get PDF
    The sequences of close to 30 microbial genomes have been completed during the past 5 years, and the sequences of more than 100 genomes should be completed in the next 2 to 4 years. Soon, completed microbial genome sequences will represent a collection of >200,000 predicted coding sequences. While analysis of a single genome provides tremendous biological insights on any given organism, comparative analysis of multiple genomes provides substantially more information on the physiology and evolution of microbial species and expands our ability to better assign putative function to predicted coding sequences

    Orbital Instabilities in a Triaxial Cusp Potential

    Full text link
    This paper constructs an analytic form for a triaxial potential that describes the dynamics of a wide variety of astrophysical systems, including the inner portions of dark matter halos, the central regions of galactic bulges, and young embedded star clusters. Specifically, this potential results from a density profile of the form ρ(m)m1\rho (m) \propto m^{-1}, where the radial coordinate is generalized to triaxial form so that m2=x2/a2+y2/b2+z2/c2m^2 = x^2/a^2 + y^2/b^2 + z^2/c^2 . Using the resulting analytic form of the potential, and the corresponding force laws, we construct orbit solutions and show that a robust orbit instability exists in these systems. For orbits initially confined to any of the three principal planes, the motion in the perpendicular direction can be unstable. We discuss the range of parameter space for which these orbits are unstable, find the growth rates and saturation levels of the instability, and develop a set of analytic model equations that elucidate the essential physics of the instability mechanism. This orbit instability has a large number of astrophysical implications and applications, including understanding the formation of dark matter halos, the structure of galactic bulges, the survival of tidal streams, and the early evolution of embedded star clusters.Comment: 50 pages, accepted for publication in Ap

    Effects of Turbulence, Eccentricity Damping, and Migration Rate on the Capture of Planets into Mean Motion Resonance

    Full text link
    Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full 3-body problem, and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasing levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into -- and maintenance of -- mean motion resonance depends sensitively on migration rate, eccentricity damping, and turbulence.Comment: 43 pages including 14 figures; accepted for publication in The Astrophysical Journa

    Dynamic Soil-Foundation-Structure Interaction Analyses of Large Caissons

    Get PDF
    Large cellular reinforced concrete caissons exist as foundations of major long-span bridges across waterways in many parts of the country. This study was conducted to evaluate the important factors affecting the seismic response of large caissons. The paper presents the results of equivalent linear and non-linear analyses performed for a typical caisson idealized based on the cellular caisson at Pier W3 of the West San Francisco Bay Bridge subject to ground motion with a peak rock acceleration of 0.6 g. This caisson is 38.7 m (127 fi) long by 22.9 m (75 ft) wide submerged in about 32.6 m (107 ft) of water. It is embedded in 33.5 m (110 fi) of soil deposits and is founded on rock. Equivalent linear 3-D and 2-D analyses conducted in the direction of the short axis (longitudinal) were performed using a modified version of computer program SASSI. The results of these 3-D and 2-D analyses are similar. Non-linear analyses were performed for 2-D models using computer program FLAC. The results indicate that side gapping, base lifting, interface sliding, and soil yielding reduce the earth pressure, base bearing stress, caisson shear and bending moment, and caisson motions. However, the frequency characteristics of the responses appear to be relatively unaffected
    corecore