332 research outputs found

    Subgrade geology beneath railways in Manchester

    Get PDF
    It is not sufficient to identify fine-grained soils, only, as locations for potential subgrade problems as could be done using a traditional 2D geological map. More information is required about the geological structure, lithological variability, mineralogy, moisture content and geotechnical properties of the soil, much of which can be supplied by modern 3D geospatial databases. These databases can be interrogated at key depths to show the wide variability of geological materials and conditions beneath the ground surface. Geological outcrop and thickness of bedrock an superficial deposits (soils), plus the permeability and water table level are predicted from the Manchester geospatial model that is based on 6500 borehole records. Geological sections along railway routes are modelled and the locations of problem soils such as alluvium, till and glaciolacustrine deposits at outcrop and shallow subcrop are identified. Spatial attribution of geotechnical data and simple methods to recast sections in engineering geological terms are demonstrated

    Does the continuum theory of dynamic fracture work?

    Full text link
    We investigate the validity of the Linear Elastic Fracture Mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent Stress Intensity Factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here is not consistent with the theoretical expectation.Comment: 4 page

    Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario

    Get PDF
    A dynamical systems approach to competition of Saffman-Taylor fingers in a channel is developed. This is based on the global study of the phase space structure of the low-dimensional ODE's defined by the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail, and general proofs concerning properties of fixed points and existence of finite-time singularities for broad classes of solutions are given. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. The main conclusion is that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space spanning a sufficiently large set of initial conditions, are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding of them does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is discussed as the key point for a generic Dynamical Solvability Scenario which is proposed for a general context of interfacial pattern selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys. Rev.

    Energy radiation of moving cracks

    Full text link
    The energy radiated by moving cracks in a discrete background is analyzed. The energy flow through a given surface is expressed in terms of a generalized Poynting vector. The velocity of the crack is determined by the radiation by the crack tip. The radiation becomes more isotropic as the crack velocity approaches the instability threshold.Comment: 7 pages, embedded figure

    Fronts with a Growth Cutoff but Speed Higher than vv^*

    Get PDF
    Fronts, propagating into an unstable state ϕ=0\phi=0, whose asymptotic speed vasv_{\text{as}} is equal to the linear spreading speed vv^* of infinitesimal perturbations about that state (so-called pulled fronts) are very sensitive to changes in the growth rate f(ϕ)f(\phi) for ϕ1\phi \ll 1. It was recently found that with a small cutoff, f(ϕ)=0f(\phi)=0 for ϕ<ϵ\phi < \epsilon, vasv_{\text{as}} converges to vv^* very slowly from below, as ln2ϵ\ln^{-2} \epsilon. Here we show that with such a cutoff {\em and} a small enhancement of the growth rate for small ϕ\phi behind it, one can have vas>vv_{\text{as}} > v^*, {\em even} in the limit ϵ0\epsilon \to 0. The effect is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are accordingly modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    Anomalous Dynamic Scaling in Locally-Conserved Coarsening of Fractal Clusters

    Full text link
    We report two-dimensional phase-field simulations of locally-conserved coarsening dynamics of random fractal clusters with fractal dimension D=1.7 and 1.5. The correlation function, cluster perimeter and solute mass are measured as functions of time. Analyzing the correlation function dynamics, we identify two different time-dependent length scales that exhibit power laws in time. The exponents of these power laws are independent of D, one of them is apparently the classic exponent 1/3. The solute mass versus time exhibits dynamic scaling with a D-dependent exponent, in agreement with a simple scaling theory.Comment: 5 pages, 4 figure

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    Viscous fingering in liquid crystals: Anisotropy and morphological transitions

    Get PDF
    We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is considered to enter through two different viscosities in two perpendicular directions can be mapped to a two-fold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with the phase-field approach to find and characterize a transition between tip-splitting and side-branching as a function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the experimentally observed (reentrant) transition as temperature and applied pressure are varied. Our observations are also consistent with previous experimental evidence in viscous fingering within an etched cell and simulations of solidification.Comment: 12 pages, 3 figures. Submitted to PR
    corecore