332 research outputs found
Subgrade geology beneath railways in Manchester
It is not sufficient to identify fine-grained soils, only, as locations for potential subgrade problems as could be done using a traditional 2D geological map. More information is required about the geological structure, lithological variability, mineralogy, moisture content and geotechnical properties of the soil, much of which can be supplied by modern 3D geospatial databases. These databases can be interrogated at key depths to show the wide variability of geological materials and conditions beneath the ground surface. Geological outcrop and thickness of bedrock an superficial deposits (soils), plus the permeability and water table level are predicted from the Manchester geospatial model that is based on 6500 borehole records. Geological sections along railway routes are modelled and the locations of problem soils such as alluvium, till and glaciolacustrine deposits at outcrop and shallow subcrop are identified. Spatial attribution of geotechnical data and simple methods to recast sections in engineering geological terms are demonstrated
Does the continuum theory of dynamic fracture work?
We investigate the validity of the Linear Elastic Fracture Mechanics approach
to dynamic fracture. We first test the predictions in a lattice simulation,
using a formula of Eshelby for the time-dependent Stress Intensity Factor.
Excellent agreement with the theory is found. We then use the same method to
analyze the experiment of Sharon and Fineberg. The data here is not consistent
with the theoretical expectation.Comment: 4 page
Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario
A dynamical systems approach to competition of Saffman-Taylor fingers in a
channel is developed. This is based on the global study of the phase space
structure of the low-dimensional ODE's defined by the classes of exact
solutions of the problem without surface tension. Some simple examples are
studied in detail, and general proofs concerning properties of fixed points and
existence of finite-time singularities for broad classes of solutions are
given. The existence of a continuum of multifinger fixed points and its
dynamical implications are discussed. The main conclusion is that exact
zero-surface tension solutions taken in a global sense as families of
trajectories in phase space spanning a sufficiently large set of initial
conditions, are unphysical because the multifinger fixed points are
nonhyperbolic, and an unfolding of them does not exist within the same class of
solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed
points is argued to be essential to the physically correct qualitative
description of finger competition. The restoring of hyperbolicity by surface
tension is discussed as the key point for a generic Dynamical Solvability
Scenario which is proposed for a general context of interfacial pattern
selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys.
Rev.
Energy radiation of moving cracks
The energy radiated by moving cracks in a discrete background is analyzed.
The energy flow through a given surface is expressed in terms of a generalized
Poynting vector. The velocity of the crack is determined by the radiation by
the crack tip. The radiation becomes more isotropic as the crack velocity
approaches the instability threshold.Comment: 7 pages, embedded figure
Fronts with a Growth Cutoff but Speed Higher than
Fronts, propagating into an unstable state , whose asymptotic speed
is equal to the linear spreading speed of infinitesimal
perturbations about that state (so-called pulled fronts) are very sensitive to
changes in the growth rate for . It was recently found
that with a small cutoff, for ,
converges to very slowly from below, as . Here we show
that with such a cutoff {\em and} a small enhancement of the growth rate for
small behind it, one can have , {\em even} in the
limit . The effect is confirmed in a stochastic lattice model
simulation where the growth rules for a few particles per site are accordingly
modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.
Lubricating Bacteria Model for Branching growth of Bacterial Colonies
Various bacterial strains (e.g. strains belonging to the genera Bacillus,
Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns
during growth on poor semi-solid substrates. These patterns reflect the
bacterial cooperative self-organization. Central part of the cooperation is the
collective formation of lubricant on top of the agar which enables the bacteria
to swim. Hence it provides the colony means to advance towards the food. One
method of modeling the colonial development is via coupled reaction-diffusion
equations which describe the time evolution of the bacterial density and the
concentrations of the relevant chemical fields. This idea has been pursued by a
number of groups. Here we present an additional model which specifically
includes an evolution equation for the lubricant excreted by the bacteria. We
show that when the diffusion of the fluid is governed by nonlinear diffusion
coefficient branching patterns evolves. We study the effect of the rates of
emission and decomposition of the lubricant fluid on the observed patterns. The
results are compared with experimental observations. We also include fields of
chemotactic agents and food chemotaxis and conclude that these features are
needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.
The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff
The concept of pulled fronts with a cutoff has been introduced to
model the effects of discrete nature of the constituent particles on the
asymptotic front speed in models with continuum variables (Pulled fronts are
the fronts which propagate into an unstable state, and have an asymptotic front
speed equal to the linear spreading speed of small linear perturbations
around the unstable state). In this paper, we demonstrate that the introduction
of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear
diffusion equation with a cutoff, we show that the longest relaxation times
that govern the convergence to the asymptotic front speed and profile,
are given by , for
.Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.
Anomalous Dynamic Scaling in Locally-Conserved Coarsening of Fractal Clusters
We report two-dimensional phase-field simulations of locally-conserved
coarsening dynamics of random fractal clusters with fractal dimension D=1.7 and
1.5. The correlation function, cluster perimeter and solute mass are measured
as functions of time. Analyzing the correlation function dynamics, we identify
two different time-dependent length scales that exhibit power laws in time. The
exponents of these power laws are independent of D, one of them is apparently
the classic exponent 1/3. The solute mass versus time exhibits dynamic scaling
with a D-dependent exponent, in agreement with a simple scaling theory.Comment: 5 pages, 4 figure
Surface Instability in Windblown Sand
We investigate the formation of ripples on the surface of windblown sand
based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71,
197 (1993)], which contains the processes of saltation and grain relaxation. We
carry out a nonlinear analysis to determine the propagation speed of the
restabilized ripple patterns, and the amplitudes and phases of their first,
second, and third harmonics. The agreement between the theory and our numerical
simulations is excellent near the onset of instability. We also determine the
Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure
Viscous fingering in liquid crystals: Anisotropy and morphological transitions
We show that a minimal model for viscous fingering with a nematic liquid
crystal in which anisotropy is considered to enter through two different
viscosities in two perpendicular directions can be mapped to a two-fold
anisotropy in the surface tension. We numerically integrate the dynamics of the
resulting problem with the phase-field approach to find and characterize a
transition between tip-splitting and side-branching as a function of both
anisotropy and dimensionless surface tension. This anisotropy dependence could
explain the experimentally observed (reentrant) transition as temperature and
applied pressure are varied. Our observations are also consistent with previous
experimental evidence in viscous fingering within an etched cell and
simulations of solidification.Comment: 12 pages, 3 figures. Submitted to PR
- …