1,516 research outputs found

    Enhanced Polymer Nanocomposites for Condition Assessment of Wind Turbine Blades

    Get PDF
    Damages in composite components of wind turbine blades and large-scale structures can lead to increase in maintenance and repair costs, inoperability, and structural failure. The vast majority of condition assessment of composite structures is conducted by visual inspection and non-destructive evaluation (NDE) techniques. NDE techniques are temporally limited, and may be further impeded by the anisotropy of the composite materials, conductivity of the fibers, and the insulating properties of the matrix. In previous work, the authors have proposed a novel soft elastomeric capacitor (SEC) sensor for monitoring of large surfaces, applicable to composite materials. This soft capacitor is fabricated using a highly sensitive elastomer sandwiched between electrodes. It transduces strain into changes in capacitance. Here, we present a fabrication method for fabricating the SEC. Different surface treatment techniques for the nanoparticles are investigated and the effects on the mechanical and the electrical properties of the produced film are studied. Results show that using melt mixing fabrication method was successful at dispersing the nanoparticles without using any surface treatment, including coating the particles with PDMS oil or the use of Si-69 coupling agent. Yet, treating the surface would result in increasing the stiffness of the matrix as well as improving the interaction between the filler particles and the matri

    United States Air Force fighter jet maintenance Models : effectiveness of index policies

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2013.Cataloged from PDF version of thesis. "June 2013."Includes bibliographical references (pages 107-109).As some of the most technically complex systems in the world, United States fighter aircraft require a complex logistics system to sustain their reliable operation and ensure that the day-to-day Air Force missions can be satisfied. While there has been a lot of attention among academics and practitioners regarding the study of this complex logistics system, most of the focus has been on availability of spare parts that are indeed essential for the smooth operations of the fighter aircraft. However, in recent years there has been an increasing awareness that maintenance resources are an equally important enabler and should be considered together with inventory issues. The maintenance resources required to repair the fighter aircraft are expensive and therefore limited. Moreover, there are various types of maintenance that compete for the same resources. It .is therefore imperative that the allocation of maintenance resources is done as efficiently as possible. In this thesis, we study two areas of fighter aircraft maintenance that could significantly benefit from improved resource allocation and scheduling strategies. We use quantitative and qualitative data from Air Force data-bases and logistics personnel to develop an innovative modeling framework to capture these challenging maintenance problems. This modeling framework is based on a generalization of the of the well-known multi-armed bandit superprocess problem. Using these models, we develop index policies which provide intuitive, easily implemented, and effective rules for scheduling maintenance activities and allocating maintenance resources. These policies seem to improve on existing best practices within the Air Force, and perform well in extensive data-driven simulated computational experiments. The first area is focused on the challenges of scheduling maintenance for the low observable (stealth) capabilities of the F-22 Raptor, specifically, maintenance of the outer coating of the aircraft that is essential to maintain its radar invisibility. In particular, we generate index policies that efficiently schedule which aircraft should enter low observable maintenance, how long they should be worked on, and which aircraft should fly in order to maximize the stealth capability of the fleet. Secondly, we model the maintenance process of the F100-229 engine, which is the primary propulsion method used in the F-16C/D and F-15E aircraft. In particular, we generate index policies to decide which engines should take priority over others, and whether or not certain components of the engines should be repaired or replaced. The policies address both elective (planned) and unplanned maintenance tasks.by John M. Kessler.S.M

    Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions

    Get PDF
    We studied tree height in stands of high-Andean&nbsp;Polylepis&nbsp;forests in two cordilleras near Cuzco (Peru) with respect to variations in human impact and climatic conditions, and compared air and soil temperatures between qualitatively defined dry and humid slopes. We studied 46 forest plots of 100 m2&nbsp;of five&nbsp;Polylepis&nbsp;species at 3560&ndash;4680 m. We measured diameter at breast height (dbh) and tree height in the stands (1229 trees in total), as well as air and soil temperatures in a subset of plots. The data was analyzed combining plots of given species from different sites at the same elevation (&plusmn;100 m). There was no elevational decrease of mean maximum tree height across the entire data set. On humid slopes, tree height decreased continuously with elevation, whereas on dry slopes it peaked at middle elevations. With mean maximum tree heights of 9 m at 4530 m on the humid slopes and of 13 m at 4650 m on the dry slopes, we here document the tallest high-elevation forests found so far worldwide. These highest stands grow under cold mean growing season air temperatures (3.6 and 3.8&deg;C on humid vs. dry slopes) and mean growing season soil temperatures (5.1 vs. 4.6&deg;C). Mean annual air and soil temperature both decreased with elevation. Dry slopes had higher mean and maximum growing season air temperatures than humid slopes. Mean annual soil temperatures did not significantly differ and mean annual air temperatures only slightly differed between slopes. However, maximum air temperatures differed on average by 6.6 K between dry and humid slopes. This suggests that the differences in tree height between the two slopes are most likely due to differences in solar radiation as reflected by maximum air temperatures. Our study furthermore provides evidence that alpine&nbsp;Polylepis&nbsp;treelines grow under lower temperature conditions than global high-elevation treelines on average, suggesting that&nbsp;Polylepis&nbsp;species may have evolved special physiological adaptations to low temperatures.</p

    Nonrigid Registration Using Regularization that Accomodates Local Tissue Rigidity

    Full text link
    Regularized nonrigid medical image registration algorithms usually estimate the deformation by minimizing a cost function, consisting of a similarity measure and a penalty term that discourages “unreasonable” deformations. Conventional regularization methods enforce homogeneous smoothness properties of the deformation field; less work has been done to incorporate tissue-type-specific elasticity information. Yet ignoring the elasticity differences between tissue types can result in non-physical results, such as bone warping. Bone structures should move rigidly (locally), unlike the more elastic deformation of soft issues. Existing solutions for this problem either treat different regions of an image independently, which requires precise segmentation and incurs boundary issues; or use an empirical spatial varying “filter” to “correct” the deformation field, which requires the knowledge of a stiffness map and departs from the cost-function formulation. We propose a new approach to incorporate tissue rigidity information into the nonrigid registration problem, by developing a space variant regularization function that encourages the local Jacobian of the deformation to be a nearly orthogonal matrix in rigid image regions, while allowing more elastic deformations elsewhere. For the case of X-ray CT data, we use a simple monotonic increasing function of the CT numbers (in HU) as a “rigidity index” since bones typically have the highest CT numbers. Unlike segmentation-based methods, this approach is flexible enough to account for partial volume effects. Results using a B-spline deformation parameterization illustrate that the proposed approach improves registration accuracy in inhale-exhale CT scans with minimal computational penalty.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85935/1/Fessler216.pd

    Variations of the 10 um Silicate Features in the Actively Accreting T Tauri Stars: DG Tau and XZ Tau

    Full text link
    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 um silicate complex in the spectra of two sources - DG Tau and XZ Tau - undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.Comment: 6 pages, emulate apj format, accepted for publication in ApJ Letter

    PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection.

    No full text
    Plasmodium falciparum is a protozoan parasite that causes human malaria. This parasitic infection accounts for approximately 655,000 deaths each year worldwide. Most deaths could be prevented by diagnosing and treating malaria promptly. To date, few parasite proteins have been developed into rapid diagnostic tools. We have combined a shotgun and a targeted proteomic strategy to characterize the plasma proteome of Gambian children with severe malaria (SM), mild malaria, and convalescent controls in search of new candidate biomarkers. Here we report four P. falciparum proteins with a high level of confidence in SM patients, namely, PF10_0121 (hypoxanthine phosphoribosyltransferase, pHPRT), PF11_0208 (phosphoglycerate mutase, pPGM), PF13_0141 (lactate dehydrogenase, pLDH), and PF14_0425 (fructose bisphosphate aldolase, pFBPA). We have optimized selected reaction monitoring (SRM) assays to quantify these proteins in individual patients. All P. falciparum proteins were higher in SM compared with mild cases or control subjects. SRM-based measurements correlated markedly with clinical anemia (low blood hemoglobin concentration), and pLDH and pFBPA were significantly correlated with higher P. falciparum parasitemia. These findings suggest that pHPRT is a promising biomarker to diagnose P. falciparum malaria infection. The diagnostic performance of this marker should be validated prospectively

    Constraining dark energy fluctuations with supernova correlations

    Full text link
    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state is not equal to -1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.Comment: 18 pages, 6 figures, matches the published versio

    A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    Get PDF
    We have observed an evolved star with a rare combination of spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust continuum dominates the spectrum of MSX SMC 029. The spectrum also shows both emission from polycyclic aromatic hydrocarbons (PAHs) and absorption at 13.7 micron from C2H2, a juxtaposition seen in only two other sources, AFGL 2688 and IRAS 13416-6243, both post-asymptotic giant branch (AGB) objects. As in these sources, the PAH spectrum has the unusual trait that the peak emission in the 7-9 micron complex lies beyond 8.0 micron. In addition, the 8.6 micron feature has an intensity as strong as the C-C modes which normally peak between 7.7 and 7.9 micron. The relative flux of the feature at 11.3 micron to that at 8 micron suggests that the PAHs in MSX SMC 029 either have a low ionization fraction or are largely unprocessed. The 13-16 micron wavelength region shows strong absorption features similar to those observed in the post-AGB objects AFGL 618 and SMP LMC 11. This broad absorption may arise from the same molecules which have been identified in those sources: C2H2, C4H2, HC3N, and C6H6. The similarities between MSX SMC 029, AFGL 2688, and AFGL 618 lead us to conclude that MSX SMC 029 has evolved off the AGB in only the past few hundred years, making it the third post-AGB object identified in the SMC.Comment: 4 figures, Fig. 4 color; to appear in the 20 November 2006 Astrophysical Journal Letter

    The Water Vapor Abundance in Orion KL Outflows

    Get PDF
    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.Comment: Accepted for publication in ApJ letters [2006 August 7] (5 pages 2, figures, not edited
    corecore