16,649 research outputs found

    SADD: STOCHASTIC ANALYSIS OF DESTRUCTIVELY MEASURED DATA - POSSIBILITIES TO INCLUDE BIOLOGICAL VARIATIONS IN STATISTICAL ANALYSIS

    Get PDF
    Three techniques are presented to include the structural variation always present in measured data in statistical analysis. The methods are investigated and compared using cross sectional data, generated based on an exponential model as if gathered by destructive measuring methods. All three methods are based on optimising objective functions based on the data and the biological shift model. These objective functions are calculated for each separate measuring point in time either according the specific density function belonging to the model applied, or after conversion into biological shift factors (also according to the model applied) according to a Gaussian distribution. The procedures used need to be improved, embedded in the existing statistical framework and all available statistical expertise and skills need to be combined into robust procedures capable of analysing everyday data

    Scattering Calculations with Wavelets

    Get PDF
    We show that the use of wavelet bases for solving the momentum-space scattering integral equation leads to sparse matrices which can simplify the solution. Wavelet bases are applied to calculate the K-matrix for nucleon-nucleon scattering with the s-wave Malfliet-Tjon V potential. We introduce a new method, which uses special properties of the wavelets, for evaluating the singular part of the integral. Analysis of this test problem indicates that a significant reduction in computational size can be achieved for realistic few-body scattering problems.Comment: 26 pages, Latex, 6 eps figure

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Equation-free Dynamic Renormalization of a KPZ-type Equation

    Full text link
    In the context of equation-free computation, we devise and implement a procedure for using short-time direct simulations of a KPZ type equation to calculate the self-similar solution for its ensemble averaged correlation function. The method involves "lifting" from candidate pair-correlation functions to consistent realization ensembles, short bursts of KPZ-type evolution, and appropriate rescaling of the resulting averaged pair correlation functions. Both the self-similar shapes and their similarity exponents are obtained at a computational cost significantly reduced to that required to reach saturation in such systems

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure

    The Land Recycling and Environmental Remediation Standards Act: Pennsylvania Tells CERCLA Enough Is Enough

    Get PDF

    Application of wavelets to singular integral scattering equations

    Full text link
    The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms is demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems.Comment: 11 pages, 4 figure
    • …
    corecore