265 research outputs found

    Assessment of Potential Augmentation and Management Strategies for Razorback Sucker \u3cem\u3eXyrauchen texanus\u3c/em\u3e in Lake Mead and Grand Canyon: A 2021 Science Panel Summary

    Get PDF
    Razorback Sucker Xyrauchen texanus is a large-bodied, long-lived species endemic to the Colorado River Basin. This species historically ranged throughout the basin from the Colorado River delta in Mexico to Wyoming and Colorado. Currently, the species persists ,in a small portion of its historical range with the help of intensive management efforts including augmentation. Recruitment to adult life stages is extremely limited in the wild, but is documented consistently in Lake Mead. Research and monitoring efforts in Lake Mead are ongoing since 1996 and have recently expanded to include the Colorado River inflow area and portions of lower Grand Canyon. Despite evidence of recruitment, the current population size in Lake Mead and Grand Canyon is believed to be small (data) and susceptible to stochastic effects. This raised interest in the potential to augment the population to prevent loss of genetic diversity and increase abundance and distribution in general, as well as explore recruitment bottlenecks. To address critical uncertainties surrounding this management option and to brainstorm other potential options, a Planning Committee and Steering Committee made up of representatives of state (Arizona, Nevada), tribal (Hualapai Tribe, Navajo Nation), and federal (Bureau of Reclamation, National Park Service, and U.S. Fish and Wildlife Service) management agencies convened an Expert Science Panel (ESP; 2021), to consider augmentation and management strategies for Razorback Sucker in Lake Mead and Grand Canyon. The purpose of this report is to summarize those findings

    Determinants of impact : towards a better understanding of encounters with the arts

    Get PDF
    The article argues that current methods for assessing the impact of the arts are largely based on a fragmented and incomplete understanding of the cognitive, psychological and socio-cultural dynamics that govern the aesthetic experience. It postulates that a better grasp of the interaction between the individual and the work of art is the necessary foundation for a genuine understanding of how the arts can affect people. Through a critique of philosophical and empirical attempts to capture the main features of the aesthetic encounter, the article draws attention to the gaps in our current understanding of the responses to art. It proposes a classification and exploration of the factors—social, cultural and psychological—that contribute to shaping the aesthetic experience, thus determining the possibility of impact. The ‘determinants of impact’ identified are distinguished into three groups: those that are inherent to the individual who interacts with the artwork; those that are inherent to the artwork; and ‘environmental factors’, which are extrinsic to both the individual and the artwork. The article concludes that any meaningful attempt to assess the impact of the arts would need to take these ‘determinants of impact’ into account, in order to capture the multidimensional and subjective nature of the aesthetic experience

    Functional Differences in the Backward Shifts of CA1 and CA3 Place Fields in Novel and Familiar Environments

    Get PDF
    Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM) of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was repeated each day over a 4-day period. CA3 place fields shifted backward (opposite to the direction of motion of the rat) only in novel environments. This backward shift gradually diminished across days, as the novel environment became more familiar with repeated exposures. Conversely, CA1 place fields shifted backward across all days in both familiar and novel environments. Prior studies demonstrated that CA1 place fields on average do not exhibit a backward shift during the first exposure to an environment in which the familiar cues are rearranged into a novel configuration, although CA3 place fields showed a strong backward shift. Under the completely novel conditions of the present study, no dissociation was observed between CA3 and CA1 during the first novel session (although a strong dissociation was observed in the familiar sessions and the later novel sessions). In summary, this is the first study to use simultaneous recordings in CA1 and CA3 to compare place field COM shift and other associated properties in truly novel and familiar environments. This study further demonstrates functional differentiation between CA1 and CA3 as the plasticity of CA1 place fields is affected differently by exposure to a completely novel environment in comparison to an altered, familiar environment, whereas the plasticity of CA3 place fields is affected similarly during both types of environmental novelty

    Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2

    Get PDF
    Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function

    Frequent CEO Turnover and Firm Performance: The Resilience Effect of Workforce Diversity

    Get PDF
    © 2020, Springer Nature B.V. CEO turnover (or succession) is a critical event in an organization that influences organizational processes and performance. The objective of this study is to investigate whether workforce diversity (i.e., age, gender, and education-level diversity) might have a resilience effect on firm performance under the frequency of CEO turnover. Based on a sample of 409 Korean firms from 2010 to 2015, our results show that firms with more frequent CEO turnover have a lower firm performance. However, firms with more gender and education-level diversity could buffer the disruptive effect of frequent CEO turnover on firm performance to offer a benefit to the organization. Our theory and findings suggest that effectively managing diverse workforce can be a resilience factor in an uncertain organizational environment because diverse workforce has complementary skills and behaviors that can cope better with uncertainty and signals social inclusion of an organization, thus fostering a long-term exchange relationship. These findings contribute to the literature on CEO turnover (or succession) and diversity

    IL-6 Mediated Degeneration of Forebrain GABAergic Interneurons and Cognitive Impairment in Aged Mice through Activation of Neuronal NADPH Oxidase

    Get PDF
    BACKGROUND:Multiple studies have shown that plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) are elevated in patients with important and prevalent adverse health conditions, including atherosclerosis, diabetes, obesity, obstructive sleep apnea, hypertension, and frailty. Higher plasma levels of IL-6, in turn, increase the risk of many conditions associated with aging including age-related cognitive decline. However, the mechanisms underlying this association between IL-6 and cognitive vulnerability remain unclear. METHODS AND FINDINGS:We investigated the role of IL-6 in brain aging in young (4 mo) and aged (24 mo) wild-type C57BL6 and genetically-matched IL-6(-/-) mice, and determined that IL-6 was necessary and sufficient for increased neuronal expression of the superoxide-producing immune enzyme, NADPH-oxidase, and this was mediated by non-canonical NFkappaB signaling. Furthermore, superoxide production by NADPH-oxidase was directly responsible for age-related loss of parvalbumin (PV)-expressing GABAergic interneurons, neurons essential for normal information processing, encoding, and retrieval in hippocampus and cortex. Targeted deletion of IL-6 or elimination of superoxide by chronic treatment with a superoxide-dismutase mimetic prevented age-related loss of PV-interneurons and reversed age-related cognitive deficits on three standard tests of spatial learning and recall. CONCLUSIONS:Present results indicate that IL-6 mediates age-related loss of critical PV-expressing GABAergic interneurons through increased neuronal NADPH-oxidase-derived superoxide production, and that rescue of these interneurons preserves cognitive performance in aging mice, suggesting that elevated peripheral IL-6 levels may be directly and mechanistically linked to long-lasting cognitive deficits in even normal older individuals. Further, because PV-interneurons are also selectively affected by commonly used anesthetic agents and drugs, our findings imply that IL-6 levels may predict adverse CNS effects in older patients exposed to these compounds through specific derangements in inhibitory interneurons, and that therapies directed at lowering IL-6 may have cognitive benefits clinically

    Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm

    Get PDF
    A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
    corecore